Siyi Liu, Gun A. Lee, Yi Li, Thammathip Piumsomboon, Barrett Ens
{"title":"虚拟现实中基于力的足部手势导航","authors":"Siyi Liu, Gun A. Lee, Yi Li, Thammathip Piumsomboon, Barrett Ens","doi":"10.1145/3489849.3489945","DOIUrl":null,"url":null,"abstract":"Navigation is a primary interaction in virtual reality. Previous research has explored different forms of artificial locomotion techniques for navigation, including hand gestures and body motions. However, few studies have investigated force-based foot gestures as a locomotion technique. We present three force-based foot gestures (Foot Fly, Foot Step and Foot Teleportation) for navigation in a virtual environment, relying on surface electromyography sensors readings from leg muscles. A pilot study comparing our techniques with controller-based techniques indicates that force-based foot gestures can provide a fun and engaging alternative. Of all six input techniques evaluated, Foot Fly was often most preferred despite requiring more exertion than the Controller Fly technique.","PeriodicalId":345527,"journal":{"name":"Proceedings of the 27th ACM Symposium on Virtual Reality Software and Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Force-Based Foot Gesture Navigation in Virtual Reality\",\"authors\":\"Siyi Liu, Gun A. Lee, Yi Li, Thammathip Piumsomboon, Barrett Ens\",\"doi\":\"10.1145/3489849.3489945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Navigation is a primary interaction in virtual reality. Previous research has explored different forms of artificial locomotion techniques for navigation, including hand gestures and body motions. However, few studies have investigated force-based foot gestures as a locomotion technique. We present three force-based foot gestures (Foot Fly, Foot Step and Foot Teleportation) for navigation in a virtual environment, relying on surface electromyography sensors readings from leg muscles. A pilot study comparing our techniques with controller-based techniques indicates that force-based foot gestures can provide a fun and engaging alternative. Of all six input techniques evaluated, Foot Fly was often most preferred despite requiring more exertion than the Controller Fly technique.\",\"PeriodicalId\":345527,\"journal\":{\"name\":\"Proceedings of the 27th ACM Symposium on Virtual Reality Software and Technology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 27th ACM Symposium on Virtual Reality Software and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3489849.3489945\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th ACM Symposium on Virtual Reality Software and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3489849.3489945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Force-Based Foot Gesture Navigation in Virtual Reality
Navigation is a primary interaction in virtual reality. Previous research has explored different forms of artificial locomotion techniques for navigation, including hand gestures and body motions. However, few studies have investigated force-based foot gestures as a locomotion technique. We present three force-based foot gestures (Foot Fly, Foot Step and Foot Teleportation) for navigation in a virtual environment, relying on surface electromyography sensors readings from leg muscles. A pilot study comparing our techniques with controller-based techniques indicates that force-based foot gestures can provide a fun and engaging alternative. Of all six input techniques evaluated, Foot Fly was often most preferred despite requiring more exertion than the Controller Fly technique.