用于环境声音分类的二维比例-频率图半nmf

Wen-Chi Hsieh, Chin-Wen Ho, Viet-Hang Duong, Yuan-Shan Lee, Jia-Ching Wang
{"title":"用于环境声音分类的二维比例-频率图半nmf","authors":"Wen-Chi Hsieh, Chin-Wen Ho, Viet-Hang Duong, Yuan-Shan Lee, Jia-Ching Wang","doi":"10.1109/APSIPA.2014.7041681","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel two dimensional feature extraction method for environmental sound classification, based on two dimensional semi-nonnegative matrix factorization (2D Semi-NMF) of scale-frequency maps. We first extract scale-frequency maps (SFMs) from the input signals, and this feature is considered preserving scale and frequency characteristics of signals. Second, a 2D Semi-NMF method is applied on SFMs to get more information of the input signals. We use the combinational coefficients extracted from 2D Semi-NMF for classification. Experimental results on an 8 class environmental sound database show that 2D Semi-NMF has better classification accuracy than traditional ID NMF and 2D NMF Also, applying 2D Semi-NMF on SFMs will get slightly improvement than SFMs features alone.","PeriodicalId":231382,"journal":{"name":"Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"2D semi-NMF of scale-frequency map for environmental sound classification\",\"authors\":\"Wen-Chi Hsieh, Chin-Wen Ho, Viet-Hang Duong, Yuan-Shan Lee, Jia-Ching Wang\",\"doi\":\"10.1109/APSIPA.2014.7041681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a novel two dimensional feature extraction method for environmental sound classification, based on two dimensional semi-nonnegative matrix factorization (2D Semi-NMF) of scale-frequency maps. We first extract scale-frequency maps (SFMs) from the input signals, and this feature is considered preserving scale and frequency characteristics of signals. Second, a 2D Semi-NMF method is applied on SFMs to get more information of the input signals. We use the combinational coefficients extracted from 2D Semi-NMF for classification. Experimental results on an 8 class environmental sound database show that 2D Semi-NMF has better classification accuracy than traditional ID NMF and 2D NMF Also, applying 2D Semi-NMF on SFMs will get slightly improvement than SFMs features alone.\",\"PeriodicalId\":231382,\"journal\":{\"name\":\"Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSIPA.2014.7041681\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIPA.2014.7041681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种新的基于比例-频率映射的二维半非负矩阵分解(2D Semi-NMF)的环境声分类二维特征提取方法。我们首先从输入信号中提取比例-频率映射(SFMs),并认为该特征保留了信号的比例和频率特征。其次,将二维半nmf方法应用于SFMs,以获得更多的输入信号信息。我们使用从2D Semi-NMF中提取的组合系数进行分类。在8类环境声数据库上的实验结果表明,二维半NMF比传统的ID NMF和二维NMF具有更好的分类精度,并且在SFMs上应用二维半NMF比单独使用SFMs特征有略高的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
2D semi-NMF of scale-frequency map for environmental sound classification
This paper introduces a novel two dimensional feature extraction method for environmental sound classification, based on two dimensional semi-nonnegative matrix factorization (2D Semi-NMF) of scale-frequency maps. We first extract scale-frequency maps (SFMs) from the input signals, and this feature is considered preserving scale and frequency characteristics of signals. Second, a 2D Semi-NMF method is applied on SFMs to get more information of the input signals. We use the combinational coefficients extracted from 2D Semi-NMF for classification. Experimental results on an 8 class environmental sound database show that 2D Semi-NMF has better classification accuracy than traditional ID NMF and 2D NMF Also, applying 2D Semi-NMF on SFMs will get slightly improvement than SFMs features alone.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smoothing of spatial filter by graph Fourier transform for EEG signals Intra line copy for HEVC screen content coding Design of FPGA-based rapid prototype spectral subtraction for hands-free speech applications Fetal ECG extraction using adaptive functional link artificial neural network Opened Pins Recommendation System to promote tourism sector in Chiang Rai Thailand
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1