一种带有动量因子的粒子群优化算法

Jinxia Ren, Shuai Yang
{"title":"一种带有动量因子的粒子群优化算法","authors":"Jinxia Ren, Shuai Yang","doi":"10.1109/ISCID.2011.13","DOIUrl":null,"url":null,"abstract":"The basic particle swarm optimization algorithm updated particles velocity only by the current particles velocity, the personal best position and the excellent particle position. Considering the influence of the previous changes among the current particles velocity, in this paper, the updating formula of particles velocity was mended by appending momentum factor, an improved particle swarm optimization algorithm with momentum factor was proposed. The simulation results show that the improved algorithm has higher accuracy and quicker convergence velocity than the basic particle swarm optimization algorithm.","PeriodicalId":224504,"journal":{"name":"2011 Fourth International Symposium on Computational Intelligence and Design","volume":"207 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Particle Swarm Optimization Algorithm with Momentum Factor\",\"authors\":\"Jinxia Ren, Shuai Yang\",\"doi\":\"10.1109/ISCID.2011.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The basic particle swarm optimization algorithm updated particles velocity only by the current particles velocity, the personal best position and the excellent particle position. Considering the influence of the previous changes among the current particles velocity, in this paper, the updating formula of particles velocity was mended by appending momentum factor, an improved particle swarm optimization algorithm with momentum factor was proposed. The simulation results show that the improved algorithm has higher accuracy and quicker convergence velocity than the basic particle swarm optimization algorithm.\",\"PeriodicalId\":224504,\"journal\":{\"name\":\"2011 Fourth International Symposium on Computational Intelligence and Design\",\"volume\":\"207 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Fourth International Symposium on Computational Intelligence and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCID.2011.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Symposium on Computational Intelligence and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCID.2011.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

基本粒子群优化算法仅根据当前粒子速度、个人最佳位置和最佳粒子位置更新粒子速度。考虑到先前粒子速度变化对当前粒子速度的影响,本文通过附加动量因子对粒子速度更新公式进行修正,提出了一种改进的带有动量因子的粒子群优化算法。仿真结果表明,改进算法比基本粒子群优化算法具有更高的精度和更快的收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Particle Swarm Optimization Algorithm with Momentum Factor
The basic particle swarm optimization algorithm updated particles velocity only by the current particles velocity, the personal best position and the excellent particle position. Considering the influence of the previous changes among the current particles velocity, in this paper, the updating formula of particles velocity was mended by appending momentum factor, an improved particle swarm optimization algorithm with momentum factor was proposed. The simulation results show that the improved algorithm has higher accuracy and quicker convergence velocity than the basic particle swarm optimization algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Public Electromagnetic Radiation Environment Comparison between China and Germany A Linear Camera Self-calibration Approach from Four Points Applications of Bayesian Network in Fault Diagnosis of Braking Deviation System Agent-Based Modelling and Simulation System for Mass Violence Event Intuitionistic Fuzzy Sets with Single Parameter and its Application to Pattern Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1