基于目标运动估计的EPD相似度量和Demons算法

Md. Asikuzzaman, A. Suman, M. Pickering
{"title":"基于目标运动估计的EPD相似度量和Demons算法","authors":"Md. Asikuzzaman, A. Suman, M. Pickering","doi":"10.1109/DICTA.2018.8615826","DOIUrl":null,"url":null,"abstract":"Reduction of the temporal redundancies among frames, which can be achieved by the proper motion-compensated prediction, is the key to efficient video compression. Image registration is a technique, which can be exploited to find the motion between the frames. As the motion of an individual scene in a frame is varying across time, it is important to find the motion of the individual object for efficient motion-compensated prediction instead of finding the global motion in a video frame as has been used in the video coding literature. In this paper, we propose a motion estimation technique for video coding that estimates the correct motion of the individual object rather than estimating the motion of the combination of objects in the frame. This method adopts a registration technique using a new edge position difference (EPD) similarity measure to separate the region of individual objects in the frame. Then we apply either EPD-based registration or the Demons registration algorithm to estimate the true motion of each object in the frame. Experimental results show that the proposed EPD-Demons registration algorithm achieves superior motion-compensated prediction of a frame when compared to the global motion estimation-based approach.","PeriodicalId":130057,"journal":{"name":"2018 Digital Image Computing: Techniques and Applications (DICTA)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"EPD Similarity Measure and Demons Algorithm for Object-Based Motion Estimation\",\"authors\":\"Md. Asikuzzaman, A. Suman, M. Pickering\",\"doi\":\"10.1109/DICTA.2018.8615826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reduction of the temporal redundancies among frames, which can be achieved by the proper motion-compensated prediction, is the key to efficient video compression. Image registration is a technique, which can be exploited to find the motion between the frames. As the motion of an individual scene in a frame is varying across time, it is important to find the motion of the individual object for efficient motion-compensated prediction instead of finding the global motion in a video frame as has been used in the video coding literature. In this paper, we propose a motion estimation technique for video coding that estimates the correct motion of the individual object rather than estimating the motion of the combination of objects in the frame. This method adopts a registration technique using a new edge position difference (EPD) similarity measure to separate the region of individual objects in the frame. Then we apply either EPD-based registration or the Demons registration algorithm to estimate the true motion of each object in the frame. Experimental results show that the proposed EPD-Demons registration algorithm achieves superior motion-compensated prediction of a frame when compared to the global motion estimation-based approach.\",\"PeriodicalId\":130057,\"journal\":{\"name\":\"2018 Digital Image Computing: Techniques and Applications (DICTA)\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Digital Image Computing: Techniques and Applications (DICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2018.8615826\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2018.8615826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

通过适当的运动补偿预测来减少帧间的时间冗余是实现高效视频压缩的关键。图像配准是一种可以用来寻找帧间运动的技术。由于帧中单个场景的运动随时间而变化,因此找到单个对象的运动以进行有效的运动补偿预测是很重要的,而不是像视频编码文献中使用的那样在视频帧中找到全局运动。在本文中,我们提出了一种用于视频编码的运动估计技术,该技术可以估计单个物体的正确运动,而不是估计帧中物体组合的运动。该方法采用一种新的边缘位置差(EPD)相似度测度的配准技术来分离图像中单个目标的区域。然后应用基于epd的配准算法或Demons配准算法来估计帧中每个物体的真实运动。实验结果表明,与基于全局运动估计的方法相比,提出的EPD-Demons配准算法实现了更好的帧运动补偿预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EPD Similarity Measure and Demons Algorithm for Object-Based Motion Estimation
Reduction of the temporal redundancies among frames, which can be achieved by the proper motion-compensated prediction, is the key to efficient video compression. Image registration is a technique, which can be exploited to find the motion between the frames. As the motion of an individual scene in a frame is varying across time, it is important to find the motion of the individual object for efficient motion-compensated prediction instead of finding the global motion in a video frame as has been used in the video coding literature. In this paper, we propose a motion estimation technique for video coding that estimates the correct motion of the individual object rather than estimating the motion of the combination of objects in the frame. This method adopts a registration technique using a new edge position difference (EPD) similarity measure to separate the region of individual objects in the frame. Then we apply either EPD-based registration or the Demons registration algorithm to estimate the true motion of each object in the frame. Experimental results show that the proposed EPD-Demons registration algorithm achieves superior motion-compensated prediction of a frame when compared to the global motion estimation-based approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Satellite Multi-Vehicle Tracking under Inconsistent Detection Conditions by Bilevel K-Shortest Paths Optimization Classification of White Blood Cells using Bispectral Invariant Features of Nuclei Shape Impulse-Equivalent Sequences and Arrays Impact of MRI Protocols on Alzheimer's Disease Detection Strided U-Net Model: Retinal Vessels Segmentation using Dice Loss
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1