基于随机粗糙子空间的神经网络集成保险欺诈检测

Wei Xu, Shengnan Wang, Dailing Zhang, Bo Yang
{"title":"基于随机粗糙子空间的神经网络集成保险欺诈检测","authors":"Wei Xu, Shengnan Wang, Dailing Zhang, Bo Yang","doi":"10.1109/CSO.2011.213","DOIUrl":null,"url":null,"abstract":"In this paper, a random rough subspace based neural network ensemble method is proposed for insurance fraud detection. In this method, rough set reduction is firstly employed to generate a set of reductions which can keep the consistency of data information. Secondly, the reductions are randomly selected to construct a subset of reductions. Thirdly, each of the selected reductions is used to train a neural network classifier based on the insurance data. Finally, the trained neural network classifiers are combined using ensemble strategies. For validation, a real automobile insurance case is used to test the effectiveness and efficiency of our proposed method with two popular evaluation criteria including the percentage correctly classified (PCC) and the receive operating characteristic (ROC) curve. The experimental results show that our proposed model outperforms single classifier and other models used in comparison. The findings of this study reseal that the random rough subspace based neural network ensemble method can provide a faster and more accurate way to find suspicious insurance claims, and it is a promising tool for insurance fraud detection.","PeriodicalId":210815,"journal":{"name":"2011 Fourth International Joint Conference on Computational Sciences and Optimization","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Random Rough Subspace Based Neural Network Ensemble for Insurance Fraud Detection\",\"authors\":\"Wei Xu, Shengnan Wang, Dailing Zhang, Bo Yang\",\"doi\":\"10.1109/CSO.2011.213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a random rough subspace based neural network ensemble method is proposed for insurance fraud detection. In this method, rough set reduction is firstly employed to generate a set of reductions which can keep the consistency of data information. Secondly, the reductions are randomly selected to construct a subset of reductions. Thirdly, each of the selected reductions is used to train a neural network classifier based on the insurance data. Finally, the trained neural network classifiers are combined using ensemble strategies. For validation, a real automobile insurance case is used to test the effectiveness and efficiency of our proposed method with two popular evaluation criteria including the percentage correctly classified (PCC) and the receive operating characteristic (ROC) curve. The experimental results show that our proposed model outperforms single classifier and other models used in comparison. The findings of this study reseal that the random rough subspace based neural network ensemble method can provide a faster and more accurate way to find suspicious insurance claims, and it is a promising tool for insurance fraud detection.\",\"PeriodicalId\":210815,\"journal\":{\"name\":\"2011 Fourth International Joint Conference on Computational Sciences and Optimization\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Fourth International Joint Conference on Computational Sciences and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSO.2011.213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Joint Conference on Computational Sciences and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSO.2011.213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

本文提出了一种基于随机粗糙子空间的神经网络集成方法用于保险欺诈检测。该方法首先利用粗糙集约简生成一组能保持数据信息一致性的约简。其次,随机选择这些约简来构建一个约简子集。第三,每个选择的约简被用来训练一个基于保险数据的神经网络分类器。最后,使用集成策略对训练好的神经网络分类器进行组合。为验证该方法的有效性,以实际汽车保险案例为例,采用两种常用的评价标准,即正确分类率(PCC)和接收工作特征(ROC)曲线,验证了该方法的有效性和效率。实验结果表明,我们提出的模型优于单一分类器和其他模型进行比较。研究结果表明,基于随机粗糙子空间的神经网络集成方法可以提供一种更快、更准确的可疑保险理赔发现方法,是一种很有前途的保险欺诈检测工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Random Rough Subspace Based Neural Network Ensemble for Insurance Fraud Detection
In this paper, a random rough subspace based neural network ensemble method is proposed for insurance fraud detection. In this method, rough set reduction is firstly employed to generate a set of reductions which can keep the consistency of data information. Secondly, the reductions are randomly selected to construct a subset of reductions. Thirdly, each of the selected reductions is used to train a neural network classifier based on the insurance data. Finally, the trained neural network classifiers are combined using ensemble strategies. For validation, a real automobile insurance case is used to test the effectiveness and efficiency of our proposed method with two popular evaluation criteria including the percentage correctly classified (PCC) and the receive operating characteristic (ROC) curve. The experimental results show that our proposed model outperforms single classifier and other models used in comparison. The findings of this study reseal that the random rough subspace based neural network ensemble method can provide a faster and more accurate way to find suspicious insurance claims, and it is a promising tool for insurance fraud detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Inverse Eigenvalue Problem for a Special Kind of Matrices A Nonlinear Artificial Intelligence Ensemble Prediction Model Based on EOF for Typhoon Track Product Review Information Extraction Based on Adjective Opinion Words The Design and Implement of Meteorological Service Benefit Assessment for Huaihe River Basin with GIS Technology The Effects of Interest Rate Regulation on Real Estate Prices in China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1