Caiipa:通过上下文模糊测试自动化大规模移动应用测试

C. Liang, N. Lane, N. Brouwers, Li Zhang, Börje F. Karlsson, Hao Liu, Yan Liu, Jun Tang, Xiang Shan, Ranveer Chandra, Feng Zhao
{"title":"Caiipa:通过上下文模糊测试自动化大规模移动应用测试","authors":"C. Liang, N. Lane, N. Brouwers, Li Zhang, Börje F. Karlsson, Hao Liu, Yan Liu, Jun Tang, Xiang Shan, Ranveer Chandra, Feng Zhao","doi":"10.1145/2639108.2639131","DOIUrl":null,"url":null,"abstract":"Scalable and comprehensive testing of mobile apps is extremely challenging. Every test input needs to be run with a variety of contexts, such as: device heterogeneity, wireless network speeds, locations, and unpredictable sensor inputs. The range of values for each context, e.g. location, can be very large. In this paper we present Caiipa, a cloud service for testing apps over an expanded mobile context space in a scalable way. It incorporates key techniques to make app testing more tractable, including a context test space prioritizer to quickly discover failure scenarios for each app. We have implemented Caiipa on a cluster of VMs and real devices that can each emulate various combinations of contexts for tablet and phone apps. We evaluate Caiipa by testing 265 commercially available mobile apps based on a comprehensive library of real-world conditions. Our results show that Caiipa leads to improvements of 11.1x and 8.4x in the number of crashes and performance bugs discovered compared to conventional UI-based automation (i.e., monkey-testing).","PeriodicalId":331897,"journal":{"name":"Proceedings of the 20th annual international conference on Mobile computing and networking","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"97","resultStr":"{\"title\":\"Caiipa: automated large-scale mobile app testing through contextual fuzzing\",\"authors\":\"C. Liang, N. Lane, N. Brouwers, Li Zhang, Börje F. Karlsson, Hao Liu, Yan Liu, Jun Tang, Xiang Shan, Ranveer Chandra, Feng Zhao\",\"doi\":\"10.1145/2639108.2639131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scalable and comprehensive testing of mobile apps is extremely challenging. Every test input needs to be run with a variety of contexts, such as: device heterogeneity, wireless network speeds, locations, and unpredictable sensor inputs. The range of values for each context, e.g. location, can be very large. In this paper we present Caiipa, a cloud service for testing apps over an expanded mobile context space in a scalable way. It incorporates key techniques to make app testing more tractable, including a context test space prioritizer to quickly discover failure scenarios for each app. We have implemented Caiipa on a cluster of VMs and real devices that can each emulate various combinations of contexts for tablet and phone apps. We evaluate Caiipa by testing 265 commercially available mobile apps based on a comprehensive library of real-world conditions. Our results show that Caiipa leads to improvements of 11.1x and 8.4x in the number of crashes and performance bugs discovered compared to conventional UI-based automation (i.e., monkey-testing).\",\"PeriodicalId\":331897,\"journal\":{\"name\":\"Proceedings of the 20th annual international conference on Mobile computing and networking\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"97\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 20th annual international conference on Mobile computing and networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2639108.2639131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th annual international conference on Mobile computing and networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2639108.2639131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 97

摘要

移动应用的可扩展和全面测试是极具挑战性的。每个测试输入都需要在各种环境下运行,例如:设备异构性、无线网络速度、位置和不可预测的传感器输入。每个上下文(例如位置)的值范围可能非常大。在本文中,我们介绍了Caiipa,这是一种云服务,用于在扩展的移动上下文空间中以可扩展的方式测试应用程序。它结合了关键技术,使应用程序测试更易于处理,包括上下文测试空间优先级,以快速发现每个应用程序的故障场景。我们已经在虚拟机和真实设备的集群上实现了Caiipa,每个设备都可以模拟平板电脑和手机应用程序的各种上下文组合。我们通过测试265个商用移动应用程序来评估Caiipa,这些应用程序基于一个全面的现实世界条件库。我们的结果表明,与传统的基于ui的自动化(即猴子测试)相比,Caiipa导致的崩溃和性能错误数量分别提高了11.1倍和8.4倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Caiipa: automated large-scale mobile app testing through contextual fuzzing
Scalable and comprehensive testing of mobile apps is extremely challenging. Every test input needs to be run with a variety of contexts, such as: device heterogeneity, wireless network speeds, locations, and unpredictable sensor inputs. The range of values for each context, e.g. location, can be very large. In this paper we present Caiipa, a cloud service for testing apps over an expanded mobile context space in a scalable way. It incorporates key techniques to make app testing more tractable, including a context test space prioritizer to quickly discover failure scenarios for each app. We have implemented Caiipa on a cluster of VMs and real devices that can each emulate various combinations of contexts for tablet and phone apps. We evaluate Caiipa by testing 265 commercially available mobile apps based on a comprehensive library of real-world conditions. Our results show that Caiipa leads to improvements of 11.1x and 8.4x in the number of crashes and performance bugs discovered compared to conventional UI-based automation (i.e., monkey-testing).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Demo: visual attention driven networking with smart glasses Poster - SEA-OR: spectrum and energy aware opportunistic routing for self-powered wireless sensor networks Poster: SaveAlert: an efficient and scalable sensor-driven danger detection system Demo: high-precision RFID tracking using COTS devies Demo: mobile opportunistic system for experience sharing (MOSES) in indoor exhibitions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1