几何感知眼图像到图像的转换

Conny Lu, Qian Zhang, K. Krishnakumar, Jixu Chen, H. Fuchs, S. Talathi, Kunlin Liu
{"title":"几何感知眼图像到图像的转换","authors":"Conny Lu, Qian Zhang, K. Krishnakumar, Jixu Chen, H. Fuchs, S. Talathi, Kunlin Liu","doi":"10.1145/3517031.3532524","DOIUrl":null,"url":null,"abstract":"Recently, image-to-image translation (I2I) has met with great success in computer vision, but few works have paid attention to the geometric changes that occur during translation. The geometric changes are necessary to reduce the geometric gap between domains at the cost of breaking correspondence between translated images and original ground truth. We propose a novel geometry-aware semi-supervised method to preserve this correspondence while still allowing geometric changes. The proposed method takes a synthetic image-mask pair as input and produces a corresponding real pair. We also utilize an objective function to ensure consistent geometric movement of the image and mask through the translation. Extensive experiments illustrate that our method yields a 11.23% higher mean Intersection-Over-Union than the current methods on the downstream eye segmentation task. The generated image has a 15.9% decrease in Frechet Inception Distance indicating higher image quality.","PeriodicalId":339393,"journal":{"name":"2022 Symposium on Eye Tracking Research and Applications","volume":"167 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Geometry-Aware Eye Image-To-Image Translation\",\"authors\":\"Conny Lu, Qian Zhang, K. Krishnakumar, Jixu Chen, H. Fuchs, S. Talathi, Kunlin Liu\",\"doi\":\"10.1145/3517031.3532524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, image-to-image translation (I2I) has met with great success in computer vision, but few works have paid attention to the geometric changes that occur during translation. The geometric changes are necessary to reduce the geometric gap between domains at the cost of breaking correspondence between translated images and original ground truth. We propose a novel geometry-aware semi-supervised method to preserve this correspondence while still allowing geometric changes. The proposed method takes a synthetic image-mask pair as input and produces a corresponding real pair. We also utilize an objective function to ensure consistent geometric movement of the image and mask through the translation. Extensive experiments illustrate that our method yields a 11.23% higher mean Intersection-Over-Union than the current methods on the downstream eye segmentation task. The generated image has a 15.9% decrease in Frechet Inception Distance indicating higher image quality.\",\"PeriodicalId\":339393,\"journal\":{\"name\":\"2022 Symposium on Eye Tracking Research and Applications\",\"volume\":\"167 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Symposium on Eye Tracking Research and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3517031.3532524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Symposium on Eye Tracking Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3517031.3532524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

近年来,图像到图像的翻译(I2I)在计算机视觉中取得了巨大的成功,但很少有研究关注翻译过程中发生的几何变化。为了减小域间的几何间隙,需要进行几何变化,但代价是破坏了翻译图像与原始地面真值之间的对应关系。我们提出了一种新的几何感知半监督方法来保持这种对应关系,同时仍然允许几何变化。该方法以合成的图像掩码对作为输入,生成对应的实图像掩码对。我们还利用目标函数来确保图像和遮罩在平移过程中的几何运动一致。大量的实验表明,我们的方法在下游的眼睛分割任务上比目前的方法产生了11.23%的平均交叉- over - union。生成的图像的Frechet Inception距离降低了15.9%,表明图像质量更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Geometry-Aware Eye Image-To-Image Translation
Recently, image-to-image translation (I2I) has met with great success in computer vision, but few works have paid attention to the geometric changes that occur during translation. The geometric changes are necessary to reduce the geometric gap between domains at the cost of breaking correspondence between translated images and original ground truth. We propose a novel geometry-aware semi-supervised method to preserve this correspondence while still allowing geometric changes. The proposed method takes a synthetic image-mask pair as input and produces a corresponding real pair. We also utilize an objective function to ensure consistent geometric movement of the image and mask through the translation. Extensive experiments illustrate that our method yields a 11.23% higher mean Intersection-Over-Union than the current methods on the downstream eye segmentation task. The generated image has a 15.9% decrease in Frechet Inception Distance indicating higher image quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SynchronEyes: A Novel, Paired Data Set of Eye Movements Recorded Simultaneously with Remote and Wearable Eye-Tracking Devices Advancing dignity for adaptive wheelchair users via a hybrid eye tracking and electromyography training game Scanpath Comparison using ScanGraph for Education and Learning Purposes: Summary of previous educational studies performed with the use of ScanGraph Poster: A Preliminary Investigation on Eye Gaze-based Concentration Recognition during Silent Reading of Text Predicting Decision-Making during an Intelligence Test via Semantic Scanpath Comparisons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1