机器人关节变量误差的容差体积

Woo-Jong Lee, T. Woo
{"title":"机器人关节变量误差的容差体积","authors":"Woo-Jong Lee, T. Woo","doi":"10.1115/1.3259042","DOIUrl":null,"url":null,"abstract":"The locational uncertainty of a manipulator is largely due to the errors of the joint variables. But these errors cannot be easily compensated for because they are dependent on the operation (i.e., robot-configuration). Motivated by the need to conduct precision engineering and the intellectual curiosity of geometric uncertainty, the probabilistic tolerance volume due to joint errors is investigated. By defining the locational uncertainty in Cartesian space as a tolerance volume, the investigation focuses on the automatic generation of the tolerance volume from a given confidence level. For this purpose, the linear mapping form Δq space to Δd space through Jacobian matrix is analyzed probabilistically. Probabilistic approach is advantageous since the tolerance volume by the deterministic approach is found to be unnecessarily large. With the assumption of normality of joint variables, this paper begins with the computation of the confidence level for a given tolerance volume. A fast analytic procedure, which gives a considerable time-reduction compared to the commonly used Monte-Carlo simulation, is presented. Based on the monotonic relation between confidence level and tolerance volume, the procedure is used to generate the tolerance volume covering the desired confidence level. The scheme is tested with the six degrees-of-freedom Stanford manipulator and shows a significant (more than 5 times) reduction in the size of the tolerance volume with a 0.3 percent probability of error.","PeriodicalId":206146,"journal":{"name":"Journal of Mechanisms Transmissions and Automation in Design","volume":"138 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Tolerance Volume Due to Joint Variable Errors in Robots\",\"authors\":\"Woo-Jong Lee, T. Woo\",\"doi\":\"10.1115/1.3259042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The locational uncertainty of a manipulator is largely due to the errors of the joint variables. But these errors cannot be easily compensated for because they are dependent on the operation (i.e., robot-configuration). Motivated by the need to conduct precision engineering and the intellectual curiosity of geometric uncertainty, the probabilistic tolerance volume due to joint errors is investigated. By defining the locational uncertainty in Cartesian space as a tolerance volume, the investigation focuses on the automatic generation of the tolerance volume from a given confidence level. For this purpose, the linear mapping form Δq space to Δd space through Jacobian matrix is analyzed probabilistically. Probabilistic approach is advantageous since the tolerance volume by the deterministic approach is found to be unnecessarily large. With the assumption of normality of joint variables, this paper begins with the computation of the confidence level for a given tolerance volume. A fast analytic procedure, which gives a considerable time-reduction compared to the commonly used Monte-Carlo simulation, is presented. Based on the monotonic relation between confidence level and tolerance volume, the procedure is used to generate the tolerance volume covering the desired confidence level. The scheme is tested with the six degrees-of-freedom Stanford manipulator and shows a significant (more than 5 times) reduction in the size of the tolerance volume with a 0.3 percent probability of error.\",\"PeriodicalId\":206146,\"journal\":{\"name\":\"Journal of Mechanisms Transmissions and Automation in Design\",\"volume\":\"138 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanisms Transmissions and Automation in Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.3259042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanisms Transmissions and Automation in Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.3259042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

机械手位置的不确定性很大程度上是由关节变量的误差引起的。但是这些误差不容易补偿,因为它们依赖于操作(即机器人配置)。基于精密工程的需要和对几何不确定性的求知欲,对关节误差的概率容限体积进行了研究。通过将笛卡尔空间中的位置不确定性定义为容差体,研究了在给定置信度下容差体的自动生成。为此,从概率上分析了通过雅可比矩阵从Δq空间到Δd空间的线性映射。概率方法是有利的,因为确定性方法的容差体积被发现是不必要的大。在联合变量的正态性假设下,计算给定容差体积下的置信水平。本文提出了一种快速的分析方法,与常用的蒙特卡罗模拟相比,该方法节省了大量的时间。基于置信度与容差量之间的单调关系,生成覆盖所需置信度的容差量。该方案与六自由度斯坦福机械手进行了测试,结果显示公差体积的尺寸显着(超过5倍)减小,误差概率为0.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tolerance Volume Due to Joint Variable Errors in Robots
The locational uncertainty of a manipulator is largely due to the errors of the joint variables. But these errors cannot be easily compensated for because they are dependent on the operation (i.e., robot-configuration). Motivated by the need to conduct precision engineering and the intellectual curiosity of geometric uncertainty, the probabilistic tolerance volume due to joint errors is investigated. By defining the locational uncertainty in Cartesian space as a tolerance volume, the investigation focuses on the automatic generation of the tolerance volume from a given confidence level. For this purpose, the linear mapping form Δq space to Δd space through Jacobian matrix is analyzed probabilistically. Probabilistic approach is advantageous since the tolerance volume by the deterministic approach is found to be unnecessarily large. With the assumption of normality of joint variables, this paper begins with the computation of the confidence level for a given tolerance volume. A fast analytic procedure, which gives a considerable time-reduction compared to the commonly used Monte-Carlo simulation, is presented. Based on the monotonic relation between confidence level and tolerance volume, the procedure is used to generate the tolerance volume covering the desired confidence level. The scheme is tested with the six degrees-of-freedom Stanford manipulator and shows a significant (more than 5 times) reduction in the size of the tolerance volume with a 0.3 percent probability of error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Integrated kinematic-kinetostatic approach to optimal design of planar mechanisms using fuzzy theories ‘Perfect’ Spring Equilibrators for Rotatable Bodies Enumeration of Basic Kinematic Chains Using the Theory of Finite Groups On the derivation of grashof-type movability conditions with transmission angle limitations for spatial mechanisms Optimal Tooth Modifications for Spur and Helical Gears
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1