汽车工程是如何将生产线工程发挥到极致的

L. Wozniak, P. Clements
{"title":"汽车工程是如何将生产线工程发挥到极致的","authors":"L. Wozniak, P. Clements","doi":"10.1145/2791060.2791071","DOIUrl":null,"url":null,"abstract":"Automotive manufacturing ranks among the most extreme instances of systems and software product line engineering (PLE). The product family numbers in the millions, each product is highly complex in its own right, and the variation across products is literally astronomical in scale. This paper explores the aspects that make the domain extreme and the very specific implications they have for PLE. These implications include the need for efficient manufacturing, complexity management, concurrent development streams, globally distributed engineering and production, a hierarchical product family tree, multi-level variation binding, constraint management, and a highly robust and integrated PLE tooling environment. Happily, the PLE paradigm supporting these implications brings about a number of opportunities for analysis and automation that provide efficiencies of production previously unattainable. We focus on one example in depth: The management and automated generation of the many thousands of calibration parameters that determine vehicle-specific software behavior. Throughout, we use the vehicle product line at General Motors, which we believe to be the world's largest, to illustrate and ground our journey through automotive PLE.","PeriodicalId":339158,"journal":{"name":"Proceedings of the 19th International Conference on Software Product Line","volume":"243 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"How automotive engineering is taking product line engineering to the extreme\",\"authors\":\"L. Wozniak, P. Clements\",\"doi\":\"10.1145/2791060.2791071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automotive manufacturing ranks among the most extreme instances of systems and software product line engineering (PLE). The product family numbers in the millions, each product is highly complex in its own right, and the variation across products is literally astronomical in scale. This paper explores the aspects that make the domain extreme and the very specific implications they have for PLE. These implications include the need for efficient manufacturing, complexity management, concurrent development streams, globally distributed engineering and production, a hierarchical product family tree, multi-level variation binding, constraint management, and a highly robust and integrated PLE tooling environment. Happily, the PLE paradigm supporting these implications brings about a number of opportunities for analysis and automation that provide efficiencies of production previously unattainable. We focus on one example in depth: The management and automated generation of the many thousands of calibration parameters that determine vehicle-specific software behavior. Throughout, we use the vehicle product line at General Motors, which we believe to be the world's largest, to illustrate and ground our journey through automotive PLE.\",\"PeriodicalId\":339158,\"journal\":{\"name\":\"Proceedings of the 19th International Conference on Software Product Line\",\"volume\":\"243 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th International Conference on Software Product Line\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2791060.2791071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th International Conference on Software Product Line","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2791060.2791071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

汽车制造业是系统和软件产品线工程(PLE)最极端的例子之一。产品族有数百万个,每个产品本身都非常复杂,不同产品之间的差异在规模上简直是天文数字。本文探讨了使领域极端的方面以及它们对PLE的非常具体的影响。这些含义包括对高效制造、复杂性管理、并发开发流、全球分布式工程和生产、分层产品家族树、多级变体绑定、约束管理以及高度健壮和集成的PLE工具环境的需求。令人高兴的是,支持这些含义的PLE范式为分析和自动化带来了许多机会,提供了以前无法实现的生产效率。我们将深入讨论一个例子:管理和自动生成数千个校准参数,这些参数决定了车辆特定的软件行为。在整个过程中,我们使用通用汽车公司的汽车产品线,我们认为这是世界上最大的,来说明和奠定我们的汽车PLE之旅。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
How automotive engineering is taking product line engineering to the extreme
Automotive manufacturing ranks among the most extreme instances of systems and software product line engineering (PLE). The product family numbers in the millions, each product is highly complex in its own right, and the variation across products is literally astronomical in scale. This paper explores the aspects that make the domain extreme and the very specific implications they have for PLE. These implications include the need for efficient manufacturing, complexity management, concurrent development streams, globally distributed engineering and production, a hierarchical product family tree, multi-level variation binding, constraint management, and a highly robust and integrated PLE tooling environment. Happily, the PLE paradigm supporting these implications brings about a number of opportunities for analysis and automation that provide efficiencies of production previously unattainable. We focus on one example in depth: The management and automated generation of the many thousands of calibration parameters that determine vehicle-specific software behavior. Throughout, we use the vehicle product line at General Motors, which we believe to be the world's largest, to illustrate and ground our journey through automotive PLE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Understanding hybrid SPL composition impact on the refactoring into SPL Modular synthesis of product lines (ModSyn-PL) All-at-once-synthesis of controllers from scenario-based product line specifications Empirical comparison of regression methods for variability-aware performance prediction Mechanical product lifecycle management meets product line engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1