{"title":"流场预测简介","authors":"Michael Frey, Kyle A. Caudle","doi":"10.1109/ICMLA.2011.82","DOIUrl":null,"url":null,"abstract":"A machine learning methodology, called flow field forecasting, is proposed for statistically predicting the future of a univariate time series. Flow field forecasting draws information from the interpolated flow field of an observed time series to build a forecast step-by-step. Flow field forecasting is presented with examples, a discussion of its properties relative to other common forecasting techniques, and a statistical error analysis.","PeriodicalId":439926,"journal":{"name":"2011 10th International Conference on Machine Learning and Applications and Workshops","volume":"332 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Introducing Flow Field Forecasting\",\"authors\":\"Michael Frey, Kyle A. Caudle\",\"doi\":\"10.1109/ICMLA.2011.82\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A machine learning methodology, called flow field forecasting, is proposed for statistically predicting the future of a univariate time series. Flow field forecasting draws information from the interpolated flow field of an observed time series to build a forecast step-by-step. Flow field forecasting is presented with examples, a discussion of its properties relative to other common forecasting techniques, and a statistical error analysis.\",\"PeriodicalId\":439926,\"journal\":{\"name\":\"2011 10th International Conference on Machine Learning and Applications and Workshops\",\"volume\":\"332 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 10th International Conference on Machine Learning and Applications and Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2011.82\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 10th International Conference on Machine Learning and Applications and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2011.82","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A machine learning methodology, called flow field forecasting, is proposed for statistically predicting the future of a univariate time series. Flow field forecasting draws information from the interpolated flow field of an observed time series to build a forecast step-by-step. Flow field forecasting is presented with examples, a discussion of its properties relative to other common forecasting techniques, and a statistical error analysis.