自然语言生成中的人类感知

Lorenzo De Mattei, Huiyuan Lai, F. Dell’Orletta, M. Nissim
{"title":"自然语言生成中的人类感知","authors":"Lorenzo De Mattei, Huiyuan Lai, F. Dell’Orletta, M. Nissim","doi":"10.18653/v1/2021.gem-1.2","DOIUrl":null,"url":null,"abstract":"We ask subjects whether they perceive as human-produced a bunch of texts, some of which are actually human-written, while others are automatically generated. We use this data to fine-tune a GPT-2 model to push it to generate more human-like texts, and observe that this fine-tuned model produces texts that are indeed perceived more human-like than the original model. Contextually, we show that our automatic evaluation strategy well correlates with human judgements. We also run a linguistic analysis to unveil the characteristics of human- vs machine-perceived language.","PeriodicalId":431658,"journal":{"name":"Proceedings of the 1st Workshop on Natural Language Generation, Evaluation, and Metrics (GEM 2021)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Human Perception in Natural Language Generation\",\"authors\":\"Lorenzo De Mattei, Huiyuan Lai, F. Dell’Orletta, M. Nissim\",\"doi\":\"10.18653/v1/2021.gem-1.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We ask subjects whether they perceive as human-produced a bunch of texts, some of which are actually human-written, while others are automatically generated. We use this data to fine-tune a GPT-2 model to push it to generate more human-like texts, and observe that this fine-tuned model produces texts that are indeed perceived more human-like than the original model. Contextually, we show that our automatic evaluation strategy well correlates with human judgements. We also run a linguistic analysis to unveil the characteristics of human- vs machine-perceived language.\",\"PeriodicalId\":431658,\"journal\":{\"name\":\"Proceedings of the 1st Workshop on Natural Language Generation, Evaluation, and Metrics (GEM 2021)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1st Workshop on Natural Language Generation, Evaluation, and Metrics (GEM 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2021.gem-1.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st Workshop on Natural Language Generation, Evaluation, and Metrics (GEM 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2021.gem-1.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们问受试者,他们是否认为一堆文本是人类产生的,其中一些实际上是人类编写的,而另一些是自动生成的。我们使用这些数据对GPT-2模型进行微调,以促使它生成更像人类的文本,并观察到这个微调模型产生的文本确实比原始模型更像人类。在上下文中,我们表明我们的自动评估策略与人类的判断很好地相关。我们还进行了语言分析,以揭示人类和机器感知语言的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Human Perception in Natural Language Generation
We ask subjects whether they perceive as human-produced a bunch of texts, some of which are actually human-written, while others are automatically generated. We use this data to fine-tune a GPT-2 model to push it to generate more human-like texts, and observe that this fine-tuned model produces texts that are indeed perceived more human-like than the original model. Contextually, we show that our automatic evaluation strategy well correlates with human judgements. We also run a linguistic analysis to unveil the characteristics of human- vs machine-perceived language.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
NUIG-DSI’s submission to The GEM Benchmark 2021 Human Perception in Natural Language Generation SimpleNER Sentence Simplification System for GEM 2021 System Description for the CommonGen task with the POINTER model Semantic Similarity Based Evaluation for Abstractive News Summarization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1