IGRAND:解码任何产品代码

Kevin Galligan, Amit Solomon, Arslan Riaz, M. Médard, R. Yazicigil, K. Duffy
{"title":"IGRAND:解码任何产品代码","authors":"Kevin Galligan, Amit Solomon, Arslan Riaz, M. Médard, R. Yazicigil, K. Duffy","doi":"10.1109/GLOBECOM46510.2021.9685645","DOIUrl":null,"url":null,"abstract":"We introduce Iterative GRAND (IGRAND), a universal product code decoder that applies iterative bounded distance decoding and decodes component codes using code-agnostic Guessing Random Additive Noise Decoding (GRAND). We empirically determine its accuracy and, based on GRAND hardware measurements, its complexity, showing gains over alternative algorithms. We prove that the class of product codes with random linear component codes, which IGRAND is capable of decoding, are capacity-achieving in hard-decision channels.","PeriodicalId":200641,"journal":{"name":"2021 IEEE Global Communications Conference (GLOBECOM)","volume":"374 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"IGRAND: decode any product code\",\"authors\":\"Kevin Galligan, Amit Solomon, Arslan Riaz, M. Médard, R. Yazicigil, K. Duffy\",\"doi\":\"10.1109/GLOBECOM46510.2021.9685645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce Iterative GRAND (IGRAND), a universal product code decoder that applies iterative bounded distance decoding and decodes component codes using code-agnostic Guessing Random Additive Noise Decoding (GRAND). We empirically determine its accuracy and, based on GRAND hardware measurements, its complexity, showing gains over alternative algorithms. We prove that the class of product codes with random linear component codes, which IGRAND is capable of decoding, are capacity-achieving in hard-decision channels.\",\"PeriodicalId\":200641,\"journal\":{\"name\":\"2021 IEEE Global Communications Conference (GLOBECOM)\",\"volume\":\"374 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Global Communications Conference (GLOBECOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOBECOM46510.2021.9685645\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Global Communications Conference (GLOBECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM46510.2021.9685645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们介绍了迭代GRAND (GRAND),一种通用的产品码解码器,它采用迭代有界距离解码,并使用码不可知猜测随机加性噪声解码(GRAND)来解码组件码。我们根据经验确定其准确性,并基于GRAND硬件测量,其复杂性,显示优于其他算法的收益。我们证明了一类具有随机线性分量码的产品码在硬决策信道中是容量实现的,并且IGRAND能够解码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
IGRAND: decode any product code
We introduce Iterative GRAND (IGRAND), a universal product code decoder that applies iterative bounded distance decoding and decodes component codes using code-agnostic Guessing Random Additive Noise Decoding (GRAND). We empirically determine its accuracy and, based on GRAND hardware measurements, its complexity, showing gains over alternative algorithms. We prove that the class of product codes with random linear component codes, which IGRAND is capable of decoding, are capacity-achieving in hard-decision channels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Blockchain-based Energy Trading Scheme for Dynamic Charging of Electric Vehicles Algebraic Design of a Class of Rate 1/3 Quasi-Cyclic LDPC Codes A Fast and Scalable Resource Allocation Scheme for End-to-End Network Slices Modelling of Multi-Tier Handover in LiFi Networks Enabling Efficient Scheduling Policy in Intelligent Reflecting Surface Aided Federated Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1