一种新的脊回归光流算法硬件结构

Taylor Simons, Dah-Jye Lee
{"title":"一种新的脊回归光流算法硬件结构","authors":"Taylor Simons, Dah-Jye Lee","doi":"10.1109/SSIAI.2018.8470370","DOIUrl":null,"url":null,"abstract":"We present a new hardware architecture for calculating the optical flow of real time video streams. Our system produces dense motion fields in real time at high resolutions. We implemented a new version of the Ridge Regression Optical flow algorithm. This architecture design focuses on maximizing parallel operations of large amounts of pixel data and pipelining the data flow to allow for real time throughput. A specialized memory controller unit was designed to access pixel data from seven different frames. This memory control alleviates any memory bottleneck. The new architecture can process 1080p HD video streams at over 60 frames per second. This design requires no processor nor data bus which allows it to be more easily manufactured as an ASIC.","PeriodicalId":422209,"journal":{"name":"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)","volume":"9 27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Hardware Architecture for the Ridge Regression Optical Flow Algorithm\",\"authors\":\"Taylor Simons, Dah-Jye Lee\",\"doi\":\"10.1109/SSIAI.2018.8470370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new hardware architecture for calculating the optical flow of real time video streams. Our system produces dense motion fields in real time at high resolutions. We implemented a new version of the Ridge Regression Optical flow algorithm. This architecture design focuses on maximizing parallel operations of large amounts of pixel data and pipelining the data flow to allow for real time throughput. A specialized memory controller unit was designed to access pixel data from seven different frames. This memory control alleviates any memory bottleneck. The new architecture can process 1080p HD video streams at over 60 frames per second. This design requires no processor nor data bus which allows it to be more easily manufactured as an ASIC.\",\"PeriodicalId\":422209,\"journal\":{\"name\":\"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)\",\"volume\":\"9 27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSIAI.2018.8470370\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSIAI.2018.8470370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种新的计算实时视频流光流的硬件结构。我们的系统以高分辨率实时产生密集的运动场。我们实现了一个新版本的岭回归光流算法。这种架构设计的重点是最大化大量像素数据的并行操作,并将数据流流水线化,以实现实时吞吐量。一个专门的存储器控制器单元被设计用来访问来自七个不同帧的像素数据。这种内存控制减轻了任何内存瓶颈。新的架构可以处理每秒60帧以上的1080p高清视频流。该设计不需要处理器和数据总线,这使得它更容易作为ASIC制造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A New Hardware Architecture for the Ridge Regression Optical Flow Algorithm
We present a new hardware architecture for calculating the optical flow of real time video streams. Our system produces dense motion fields in real time at high resolutions. We implemented a new version of the Ridge Regression Optical flow algorithm. This architecture design focuses on maximizing parallel operations of large amounts of pixel data and pipelining the data flow to allow for real time throughput. A specialized memory controller unit was designed to access pixel data from seven different frames. This memory control alleviates any memory bottleneck. The new architecture can process 1080p HD video streams at over 60 frames per second. This design requires no processor nor data bus which allows it to be more easily manufactured as an ASIC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Graph Modularity and Randomness Measures : A Comparative Study Drive-Net: Convolutional Network for Driver Distraction Detection In-between and cross-frequency dependence-based summarization of resting-state fMRI data A Ground-Truth Fusion Method for Image Segmentation Evaluation Sleep Analysis Using Motion and Head Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1