铝合金金相学:显微组织图谱

S. Murty, Sushant K. Manwatkar, P. Narayanan
{"title":"铝合金金相学:显微组织图谱","authors":"S. Murty, Sushant K. Manwatkar, P. Narayanan","doi":"10.1201/9781351045636-140000203","DOIUrl":null,"url":null,"abstract":"Microstructure plays an important role in obtaining the desired properties in metallic materials in general and aluminum alloys in particular. Mechanical properties of aluminum alloys can be significantly altered by changing the microstructure. No other alloy system can boast of as many temper conditions as aluminum alloys. With the progress in the understanding of microstructure–mechanical property relationships in these materials, “tailor made” alloys to meet specific demands are being industrially developed. The broad spectrum of aluminum alloys in wide range of temper conditions offer materials with widely varying mechanical properties for structural designers. In order to select aluminum alloys with the desired properties for the intended application, it is essential to understand the role of microstructure under actual service conditions. It is in this context “Metallography of aluminum alloys” becomes very important. This chapter provides an insight in to the microstructural evolution of aluminum alloys from the as-cast condition to the final product. Typical examples of microstructural evolution in different aluminum alloys under various thermomechanical conditions are presented here. An atlas of microstructures of commercial and experimental wrought and cast aluminum alloys is presented in an appendix to this book. This appendix includes optical photomicrographs of both cast and wrought alloys and scanning electron micrographs of polished surfaces as well as fracture surfaces of various aluminum alloys as well as transmission electron micrographs as separate annexure. Readers are encouraged to go through the optical microstructures and fractographs along with this chapter for better understanding of the evolution of microstructure as a function of alloying additions, thermomechanical processing conditions, and fracture behavior under tension.","PeriodicalId":348912,"journal":{"name":"Encyclopedia of Aluminum and Its Alloys","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metallography of Aluminum Alloys: Atlas of Microstructures\",\"authors\":\"S. Murty, Sushant K. Manwatkar, P. Narayanan\",\"doi\":\"10.1201/9781351045636-140000203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microstructure plays an important role in obtaining the desired properties in metallic materials in general and aluminum alloys in particular. Mechanical properties of aluminum alloys can be significantly altered by changing the microstructure. No other alloy system can boast of as many temper conditions as aluminum alloys. With the progress in the understanding of microstructure–mechanical property relationships in these materials, “tailor made” alloys to meet specific demands are being industrially developed. The broad spectrum of aluminum alloys in wide range of temper conditions offer materials with widely varying mechanical properties for structural designers. In order to select aluminum alloys with the desired properties for the intended application, it is essential to understand the role of microstructure under actual service conditions. It is in this context “Metallography of aluminum alloys” becomes very important. This chapter provides an insight in to the microstructural evolution of aluminum alloys from the as-cast condition to the final product. Typical examples of microstructural evolution in different aluminum alloys under various thermomechanical conditions are presented here. An atlas of microstructures of commercial and experimental wrought and cast aluminum alloys is presented in an appendix to this book. This appendix includes optical photomicrographs of both cast and wrought alloys and scanning electron micrographs of polished surfaces as well as fracture surfaces of various aluminum alloys as well as transmission electron micrographs as separate annexure. Readers are encouraged to go through the optical microstructures and fractographs along with this chapter for better understanding of the evolution of microstructure as a function of alloying additions, thermomechanical processing conditions, and fracture behavior under tension.\",\"PeriodicalId\":348912,\"journal\":{\"name\":\"Encyclopedia of Aluminum and Its Alloys\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Encyclopedia of Aluminum and Its Alloys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/9781351045636-140000203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Encyclopedia of Aluminum and Its Alloys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9781351045636-140000203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在金属材料,特别是铝合金中,微观组织对获得理想的性能起着重要的作用。通过改变铝合金的微观组织,可以显著改变铝合金的力学性能。没有其他合金系统可以自夸像铝合金一样多的回火条件。随着对这些材料的微观结构-力学性能关系的理解的进步,满足特定需求的“定制”合金正在工业化开发。广泛的铝合金在各种回火条件下为结构设计师提供了具有广泛不同机械性能的材料。为了选择具有预期应用所需性能的铝合金,有必要了解微观组织在实际使用条件下的作用。正是在这种背景下,“铝合金金相学”变得十分重要。本章提供了铝合金从铸态到最终产品的微观组织演变的见解。本文给出了不同热力学条件下不同铝合金微观组织演变的典型实例。商业和实验锻造和铸造铝合金的显微结构的地图集是在本书的附录中提出的。本附录包括铸造和锻造合金的光学显微照片,抛光表面的扫描电子显微照片以及各种铝合金的断口表面,以及作为单独附件的透射电子显微照片。我们鼓励读者阅读本章的光学显微结构和断口图,以便更好地理解微观结构的演变,作为合金添加量、热机械加工条件和拉伸下断裂行为的函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Metallography of Aluminum Alloys: Atlas of Microstructures
Microstructure plays an important role in obtaining the desired properties in metallic materials in general and aluminum alloys in particular. Mechanical properties of aluminum alloys can be significantly altered by changing the microstructure. No other alloy system can boast of as many temper conditions as aluminum alloys. With the progress in the understanding of microstructure–mechanical property relationships in these materials, “tailor made” alloys to meet specific demands are being industrially developed. The broad spectrum of aluminum alloys in wide range of temper conditions offer materials with widely varying mechanical properties for structural designers. In order to select aluminum alloys with the desired properties for the intended application, it is essential to understand the role of microstructure under actual service conditions. It is in this context “Metallography of aluminum alloys” becomes very important. This chapter provides an insight in to the microstructural evolution of aluminum alloys from the as-cast condition to the final product. Typical examples of microstructural evolution in different aluminum alloys under various thermomechanical conditions are presented here. An atlas of microstructures of commercial and experimental wrought and cast aluminum alloys is presented in an appendix to this book. This appendix includes optical photomicrographs of both cast and wrought alloys and scanning electron micrographs of polished surfaces as well as fracture surfaces of various aluminum alloys as well as transmission electron micrographs as separate annexure. Readers are encouraged to go through the optical microstructures and fractographs along with this chapter for better understanding of the evolution of microstructure as a function of alloying additions, thermomechanical processing conditions, and fracture behavior under tension.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Welding Parameters for Aluminum Alloys Computer Vision for Fault Detection in Aluminum Castings Quality Parameters for High-Pressure Diecastings 6XXX Alloys: Chemical Composition and Heat Treatment Quench Factor Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1