基于超级计算资源的系统生物学大规模基因网络推理系统

Younghoon Kim, Doheon Lee, Yongseong Cho, Sang Joo Lee
{"title":"基于超级计算资源的系统生物学大规模基因网络推理系统","authors":"Younghoon Kim, Doheon Lee, Yongseong Cho, Sang Joo Lee","doi":"10.1145/1651318.1651340","DOIUrl":null,"url":null,"abstract":"Motivation: Although gene expression data has been continuously accumulated and meta-analysis approaches have been developed to integrate independent expression profiles into larger datasets, the amount of information is still insufficient to infer large scale genetic networks. In addition, global optimization such as Bayesian network inference, one of the most representative techniques for genetic network inference, requires tremendous computational load far beyond the capacity of moderate workstations.\n Results: MONET is a Cytoscape plugin to infer genome-scale networks from gene expression profiles. It alleviates the shortage of information by incorporating pre-existing annotations. The current version of MONET utilizes thousands of parallel computational cores in the supercomputing center in KISTI, Korea, to cope with the computational requirement for large scale genetic network inference.\n Availability: A cytoscape plugin is available at http://cytoscape.org and a web service is at http://delsol.kaist.ac.kr/~monet/home","PeriodicalId":143937,"journal":{"name":"Data and Text Mining in Bioinformatics","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A large-scale gene network inference system for systems biology on supercomputing resources\",\"authors\":\"Younghoon Kim, Doheon Lee, Yongseong Cho, Sang Joo Lee\",\"doi\":\"10.1145/1651318.1651340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivation: Although gene expression data has been continuously accumulated and meta-analysis approaches have been developed to integrate independent expression profiles into larger datasets, the amount of information is still insufficient to infer large scale genetic networks. In addition, global optimization such as Bayesian network inference, one of the most representative techniques for genetic network inference, requires tremendous computational load far beyond the capacity of moderate workstations.\\n Results: MONET is a Cytoscape plugin to infer genome-scale networks from gene expression profiles. It alleviates the shortage of information by incorporating pre-existing annotations. The current version of MONET utilizes thousands of parallel computational cores in the supercomputing center in KISTI, Korea, to cope with the computational requirement for large scale genetic network inference.\\n Availability: A cytoscape plugin is available at http://cytoscape.org and a web service is at http://delsol.kaist.ac.kr/~monet/home\",\"PeriodicalId\":143937,\"journal\":{\"name\":\"Data and Text Mining in Bioinformatics\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data and Text Mining in Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1651318.1651340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data and Text Mining in Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1651318.1651340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

动机:尽管基因表达数据不断积累,荟萃分析方法已经发展到将独立的表达谱整合到更大的数据集中,但信息量仍然不足以推断大规模的遗传网络。此外,遗传网络推理中最具代表性的技术之一贝叶斯网络推理等全局优化算法需要大量的计算量,远远超出一般工作站的能力。结果:MONET是一个Cytoscape插件,可以从基因表达谱中推断基因组规模的网络。它通过合并预先存在的注释来缓解信息的不足。当前版本的MONET利用韩国KISTI超级计算中心的数千个并行计算核心来应对大规模遗传网络推理的计算需求。可用性:cytoscape插件可在http://cytoscape.org上获得,web服务可在http://delsol.kaist.ac.kr/~monet/home上获得
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A large-scale gene network inference system for systems biology on supercomputing resources
Motivation: Although gene expression data has been continuously accumulated and meta-analysis approaches have been developed to integrate independent expression profiles into larger datasets, the amount of information is still insufficient to infer large scale genetic networks. In addition, global optimization such as Bayesian network inference, one of the most representative techniques for genetic network inference, requires tremendous computational load far beyond the capacity of moderate workstations. Results: MONET is a Cytoscape plugin to infer genome-scale networks from gene expression profiles. It alleviates the shortage of information by incorporating pre-existing annotations. The current version of MONET utilizes thousands of parallel computational cores in the supercomputing center in KISTI, Korea, to cope with the computational requirement for large scale genetic network inference. Availability: A cytoscape plugin is available at http://cytoscape.org and a web service is at http://delsol.kaist.ac.kr/~monet/home
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Construction of Multi-level Networks Incorporating Molecule, Cell, Organ and Phenotype Properties for Drug-induced Phenotype Prediction Integrative Database for Exploring Compound Combinations of Natural Products for Medical Effects TILD: A Strategy to Identify Cancer-related Genes Using Title Information in Literature Data An Exploration of the Collaborative Networks for Clinical and Academic Domains in AIDS Research: A Spatial Scientometric Approach Identification of a Specific Base Sequence of Pathogenic E. Coli through a Genomic Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1