流变滴技术的数值与实验研究

K. Alqosaibi, Mohammed Alemmrani, Ahmed Almalki, A. Duhduh, J. Coulter
{"title":"流变滴技术的数值与实验研究","authors":"K. Alqosaibi, Mohammed Alemmrani, Ahmed Almalki, A. Duhduh, J. Coulter","doi":"10.1115/imece2022-94952","DOIUrl":null,"url":null,"abstract":"\n A novel invention to advanced hot runner-based injection molding called Rheodrop technology is introduced. The technology allows control over the melt rheology inside the hot drops during/between injection molding cycles. The concept is to rotate the valve pin inside the hot drop to apply a controlled shear rate to the polymer melt. Doing so eliminated the incomplete filling defects associated with molding thin-walled parts and allowed processing at a lower melt temperature. The applied shear stress by Rheodrop technology was investigated utilizing ANSYS fluent software. The maximum shear stress that the polymer gets exposed to during the injection molding cycle was specified using Moldflow software. The results showed that the Rheodrop applies less shear stress than what the polymer gets exposed to during the injection molding cycle. Thus, utilizing Rheodrop does not cause additional damage to the polymer melt. Rheometric analyses were performed to investigate the polymer degradation for ABS. The reduction rate of viscosity was the same for samples that were injection molded conventionally and samples that were molded using Rheodrop technology.","PeriodicalId":113474,"journal":{"name":"Volume 2B: Advanced Manufacturing","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical and Experimental Investigation of Rheodrop Technology\",\"authors\":\"K. Alqosaibi, Mohammed Alemmrani, Ahmed Almalki, A. Duhduh, J. Coulter\",\"doi\":\"10.1115/imece2022-94952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A novel invention to advanced hot runner-based injection molding called Rheodrop technology is introduced. The technology allows control over the melt rheology inside the hot drops during/between injection molding cycles. The concept is to rotate the valve pin inside the hot drop to apply a controlled shear rate to the polymer melt. Doing so eliminated the incomplete filling defects associated with molding thin-walled parts and allowed processing at a lower melt temperature. The applied shear stress by Rheodrop technology was investigated utilizing ANSYS fluent software. The maximum shear stress that the polymer gets exposed to during the injection molding cycle was specified using Moldflow software. The results showed that the Rheodrop applies less shear stress than what the polymer gets exposed to during the injection molding cycle. Thus, utilizing Rheodrop does not cause additional damage to the polymer melt. Rheometric analyses were performed to investigate the polymer degradation for ABS. The reduction rate of viscosity was the same for samples that were injection molded conventionally and samples that were molded using Rheodrop technology.\",\"PeriodicalId\":113474,\"journal\":{\"name\":\"Volume 2B: Advanced Manufacturing\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2B: Advanced Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2022-94952\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2B: Advanced Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2022-94952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

介绍了一种先进的热流道注射成型技术——流变滴技术。该技术允许在注射成型周期期间/之间控制热滴内部的熔体流变。其原理是旋转热滴内部的阀销,以控制聚合物熔体的剪切速率。这样做消除了与薄壁件成型相关的不完全填充缺陷,并允许在较低的熔体温度下进行加工。利用ANSYS fluent软件对流变降技术施加的剪切应力进行了研究。聚合物在注射成型周期中暴露的最大剪切应力是使用Moldflow软件指定的。结果表明,流变滴施加的剪切应力小于聚合物在注射成型周期中暴露的剪切应力。因此,使用流变液不会对聚合物熔体造成额外的损害。通过流变学分析,研究了ABS的聚合物降解情况。常规注射成型和使用Rheodrop技术成型的样品的粘度降低率是相同的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical and Experimental Investigation of Rheodrop Technology
A novel invention to advanced hot runner-based injection molding called Rheodrop technology is introduced. The technology allows control over the melt rheology inside the hot drops during/between injection molding cycles. The concept is to rotate the valve pin inside the hot drop to apply a controlled shear rate to the polymer melt. Doing so eliminated the incomplete filling defects associated with molding thin-walled parts and allowed processing at a lower melt temperature. The applied shear stress by Rheodrop technology was investigated utilizing ANSYS fluent software. The maximum shear stress that the polymer gets exposed to during the injection molding cycle was specified using Moldflow software. The results showed that the Rheodrop applies less shear stress than what the polymer gets exposed to during the injection molding cycle. Thus, utilizing Rheodrop does not cause additional damage to the polymer melt. Rheometric analyses were performed to investigate the polymer degradation for ABS. The reduction rate of viscosity was the same for samples that were injection molded conventionally and samples that were molded using Rheodrop technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Methodology for Digital Twins of Product Lifecycle Supported by Digital Thread Thermal Analysis and Design of Self-Heating Molds Using Large-Scale Additive Manufacturing for Out-of-Autoclave Applications Conveyer-Less Matrix Assembly Layout Design to Maximize Labor Productivity and Footprint Usage A Comparative Numerical Investigation on Machining of Laminated and 3D Printed CFRP Composites Modelling of Surface Roughness in CO2 Laser Ablation of Aluminium-Coated Polymethyl Methacrylate (PMMA) Using Adaptive Neuro-Fuzzy Inference System (ANFIS)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1