基于小波分析的纹理分类遗传规划方法

Zheng Chen, S. Lu
{"title":"基于小波分析的纹理分类遗传规划方法","authors":"Zheng Chen, S. Lu","doi":"10.1109/WISP.2007.4447575","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a method for classifying textures using Genetic Programming (GP). Texture features are extracted from the energy of subimages of the wavelet decomposition. The GP is then used to evolve rules, which are arithmetic combinations of energy features, to identify whether a texture image belongs to certain class. Instead of using only one rule to discriminate the samples, a set of rules are used to perform the prediction by applying the majority voting technique. In our experiment results based on Brodatz dataset, the proposed method has achieved 99.6% test accuracy on an average. In addition, the experiment results also show that classification rules generated by this approach are robust to some noises on textures.","PeriodicalId":164902,"journal":{"name":"2007 IEEE International Symposium on Intelligent Signal Processing","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A Genetic Programming Approach for Classification of Textures Based on Wavelet Analysis\",\"authors\":\"Zheng Chen, S. Lu\",\"doi\":\"10.1109/WISP.2007.4447575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a method for classifying textures using Genetic Programming (GP). Texture features are extracted from the energy of subimages of the wavelet decomposition. The GP is then used to evolve rules, which are arithmetic combinations of energy features, to identify whether a texture image belongs to certain class. Instead of using only one rule to discriminate the samples, a set of rules are used to perform the prediction by applying the majority voting technique. In our experiment results based on Brodatz dataset, the proposed method has achieved 99.6% test accuracy on an average. In addition, the experiment results also show that classification rules generated by this approach are robust to some noises on textures.\",\"PeriodicalId\":164902,\"journal\":{\"name\":\"2007 IEEE International Symposium on Intelligent Signal Processing\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Symposium on Intelligent Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WISP.2007.4447575\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Symposium on Intelligent Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISP.2007.4447575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文提出了一种基于遗传规划的纹理分类方法。从小波分解的子图像能量中提取纹理特征。然后使用GP来进化规则,这些规则是能量特征的算术组合,以识别纹理图像是否属于特定的类。而不是只使用一个规则来区分样本,使用一组规则来执行预测,通过应用多数投票技术。在基于Brodatz数据集的实验结果中,该方法的平均测试准确率达到了99.6%。此外,实验结果还表明,该方法生成的分类规则对纹理上的某些噪声具有较好的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Genetic Programming Approach for Classification of Textures Based on Wavelet Analysis
In this paper, we propose a method for classifying textures using Genetic Programming (GP). Texture features are extracted from the energy of subimages of the wavelet decomposition. The GP is then used to evolve rules, which are arithmetic combinations of energy features, to identify whether a texture image belongs to certain class. Instead of using only one rule to discriminate the samples, a set of rules are used to perform the prediction by applying the majority voting technique. In our experiment results based on Brodatz dataset, the proposed method has achieved 99.6% test accuracy on an average. In addition, the experiment results also show that classification rules generated by this approach are robust to some noises on textures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recent Developments in All-Optical Nonlinear Signal Processing for Fiber-Optic Communications Robust Ultrasonic Spread-Spectrum Positioning System using a AoA/ToA Method Distributed perception for a group of legged robots Advanced Multisensorial Barrier for Obstacle Detection Visual Model Feature Tracking For UAV Control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1