高斯混合模型的判别模型选择

Xiao-Hua Liu, Cheng-Lin Liu
{"title":"高斯混合模型的判别模型选择","authors":"Xiao-Hua Liu, Cheng-Lin Liu","doi":"10.1109/ACPR.2011.6166658","DOIUrl":null,"url":null,"abstract":"The Gaussian mixture model (GMM) has been widely used in pattern recognition problems for clustering and probability density estimation. Given the number of mixture components (model order), the parameters of GMM can be estimated by the EM algorithm. The model order selection, however, remains an open problem. For classification purpose, we propose a discriminative model selection method to optimize the orders of all classes. Based on the GMMs initialized in some way, the orders of all classes are adjusted heuristically to improve the cross-validated classification accuracy. The model orders selected in this discriminative way are expected to give higher generalized accuracy than classwise model selection. Our experimental results on some UCI datasets demonstrate the superior classification performance of the proposed method.","PeriodicalId":287232,"journal":{"name":"The First Asian Conference on Pattern Recognition","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Discriminative model selection for Gaussian mixture models for classification\",\"authors\":\"Xiao-Hua Liu, Cheng-Lin Liu\",\"doi\":\"10.1109/ACPR.2011.6166658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Gaussian mixture model (GMM) has been widely used in pattern recognition problems for clustering and probability density estimation. Given the number of mixture components (model order), the parameters of GMM can be estimated by the EM algorithm. The model order selection, however, remains an open problem. For classification purpose, we propose a discriminative model selection method to optimize the orders of all classes. Based on the GMMs initialized in some way, the orders of all classes are adjusted heuristically to improve the cross-validated classification accuracy. The model orders selected in this discriminative way are expected to give higher generalized accuracy than classwise model selection. Our experimental results on some UCI datasets demonstrate the superior classification performance of the proposed method.\",\"PeriodicalId\":287232,\"journal\":{\"name\":\"The First Asian Conference on Pattern Recognition\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The First Asian Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACPR.2011.6166658\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The First Asian Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2011.6166658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

高斯混合模型(GMM)广泛应用于聚类和概率密度估计的模式识别问题。给定混合成分的数量(模型阶数),可以用EM算法估计出GMM的参数。然而,模型顺序的选择仍然是一个悬而未决的问题。为了实现分类目的,我们提出了一种判别模型选择方法来优化所有类的排序。在以某种方式初始化gmm的基础上,启发式地调整所有类的顺序,以提高交叉验证的分类精度。以这种判别方式选择的模型顺序有望比分类模型选择提供更高的广义精度。在一些UCI数据集上的实验结果表明,该方法具有较好的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discriminative model selection for Gaussian mixture models for classification
The Gaussian mixture model (GMM) has been widely used in pattern recognition problems for clustering and probability density estimation. Given the number of mixture components (model order), the parameters of GMM can be estimated by the EM algorithm. The model order selection, however, remains an open problem. For classification purpose, we propose a discriminative model selection method to optimize the orders of all classes. Based on the GMMs initialized in some way, the orders of all classes are adjusted heuristically to improve the cross-validated classification accuracy. The model orders selected in this discriminative way are expected to give higher generalized accuracy than classwise model selection. Our experimental results on some UCI datasets demonstrate the superior classification performance of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geolocation based image annotation Discriminant appearance weighting for action recognition Tree crown detection in high resolution optical images during the early growth stages of Eucalyptus plantations in Brazil Designing and selecting features for MR image segmentation Adaptive Patch Alignment Based Local Binary Patterns for face recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1