基于推理和堆叠混合分类器的RGB-D图像室内场景分类

Shokouh S. Ahmadi, Hassan Khotanlou
{"title":"基于推理和堆叠混合分类器的RGB-D图像室内场景分类","authors":"Shokouh S. Ahmadi, Hassan Khotanlou","doi":"10.1109/MVIP53647.2022.9738755","DOIUrl":null,"url":null,"abstract":"Scene classification makes it easier to semantic scene understanding and aids to further processes and inference, using an assignment of pre-defined classes. Under this motive, we proposed an approach to classify indoor scene objects. The proposed method utilizes a stacked classifier model and refines classification results considering segment consistency. Furthermore, the challenging and messy indoor scene images have been addressed, as dealing daily. Finally, this approach simplicity and affordably obtains desirable classification results.","PeriodicalId":184716,"journal":{"name":"2022 International Conference on Machine Vision and Image Processing (MVIP)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Hybrid of Inference and Stacked Classifiers to Indoor Scenes Classification of RGB-D Images\",\"authors\":\"Shokouh S. Ahmadi, Hassan Khotanlou\",\"doi\":\"10.1109/MVIP53647.2022.9738755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scene classification makes it easier to semantic scene understanding and aids to further processes and inference, using an assignment of pre-defined classes. Under this motive, we proposed an approach to classify indoor scene objects. The proposed method utilizes a stacked classifier model and refines classification results considering segment consistency. Furthermore, the challenging and messy indoor scene images have been addressed, as dealing daily. Finally, this approach simplicity and affordably obtains desirable classification results.\",\"PeriodicalId\":184716,\"journal\":{\"name\":\"2022 International Conference on Machine Vision and Image Processing (MVIP)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Machine Vision and Image Processing (MVIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MVIP53647.2022.9738755\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Machine Vision and Image Processing (MVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MVIP53647.2022.9738755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

场景分类使用预定义类的分配,使语义场景理解更容易,并有助于进一步的处理和推理。在此动机下,我们提出了一种室内场景物体的分类方法。该方法采用堆叠分类器模型,并考虑片段一致性对分类结果进行细化。此外,解决了具有挑战性和凌乱的室内场景图像,作为日常处理。最后,该方法简单、经济,获得了理想的分类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Hybrid of Inference and Stacked Classifiers to Indoor Scenes Classification of RGB-D Images
Scene classification makes it easier to semantic scene understanding and aids to further processes and inference, using an assignment of pre-defined classes. Under this motive, we proposed an approach to classify indoor scene objects. The proposed method utilizes a stacked classifier model and refines classification results considering segment consistency. Furthermore, the challenging and messy indoor scene images have been addressed, as dealing daily. Finally, this approach simplicity and affordably obtains desirable classification results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transfer Learning on Semantic Segmentation for Sugar Crystal Analysis Evaluation of the Image Processing Technique in Interpretation of Polar Plot Characteristics of Transformer Frequency Response Novel Gaussian Mixture-based Video Coding for Fixed Background Video Streaming Automated Cell Tracking Using Adaptive Multi-stage Kalman Filter In Time-laps Images Facial Expression Recognition: a Comparison with Different Classical and Deep Learning Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1