{"title":"基于机器学习的移动众测中针对电池的非法任务注入预防","authors":"Yueqian Zhang, Murat Simsek, B. Kantarci","doi":"10.1145/3324921.3328786","DOIUrl":null,"url":null,"abstract":"Mobile crowdsensing (MCS) is a cloud-inspired and non-dedicated sensing paradigm to enable ubiquitous sensing via built-in sensors of personalized devices. Due to disparate participants and sensing tasks, MCS is vulnerable to threats initiated by malicious participants, which can either be a participant providing sensory data or an end user injecting a fake task aiming at resource (e.g. battery, sensor, etc.) clogging at the participating devices. This paper builds on machine learning-based detection of illegitimate tasks, and investigates the impact of machine learning-based prevention of battery-oriented illegitimate task injection in MCS campaigns. To this end, we introduce two different attack strategies, and test the impact of ML-based detection and elimination of fake tasks on task completion rate, as well as the overall battery drain of participating devices. Simulation results confirm that up to 14% battery power can be saved at the expense of a slight decrease in the completion rate of legitimate tasks.","PeriodicalId":435733,"journal":{"name":"Proceedings of the ACM Workshop on Wireless Security and Machine Learning","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Machine Learning-based Prevention of Battery-oriented Illegitimate Task Injection in Mobile Crowdsensing\",\"authors\":\"Yueqian Zhang, Murat Simsek, B. Kantarci\",\"doi\":\"10.1145/3324921.3328786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile crowdsensing (MCS) is a cloud-inspired and non-dedicated sensing paradigm to enable ubiquitous sensing via built-in sensors of personalized devices. Due to disparate participants and sensing tasks, MCS is vulnerable to threats initiated by malicious participants, which can either be a participant providing sensory data or an end user injecting a fake task aiming at resource (e.g. battery, sensor, etc.) clogging at the participating devices. This paper builds on machine learning-based detection of illegitimate tasks, and investigates the impact of machine learning-based prevention of battery-oriented illegitimate task injection in MCS campaigns. To this end, we introduce two different attack strategies, and test the impact of ML-based detection and elimination of fake tasks on task completion rate, as well as the overall battery drain of participating devices. Simulation results confirm that up to 14% battery power can be saved at the expense of a slight decrease in the completion rate of legitimate tasks.\",\"PeriodicalId\":435733,\"journal\":{\"name\":\"Proceedings of the ACM Workshop on Wireless Security and Machine Learning\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM Workshop on Wireless Security and Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3324921.3328786\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Workshop on Wireless Security and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3324921.3328786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Machine Learning-based Prevention of Battery-oriented Illegitimate Task Injection in Mobile Crowdsensing
Mobile crowdsensing (MCS) is a cloud-inspired and non-dedicated sensing paradigm to enable ubiquitous sensing via built-in sensors of personalized devices. Due to disparate participants and sensing tasks, MCS is vulnerable to threats initiated by malicious participants, which can either be a participant providing sensory data or an end user injecting a fake task aiming at resource (e.g. battery, sensor, etc.) clogging at the participating devices. This paper builds on machine learning-based detection of illegitimate tasks, and investigates the impact of machine learning-based prevention of battery-oriented illegitimate task injection in MCS campaigns. To this end, we introduce two different attack strategies, and test the impact of ML-based detection and elimination of fake tasks on task completion rate, as well as the overall battery drain of participating devices. Simulation results confirm that up to 14% battery power can be saved at the expense of a slight decrease in the completion rate of legitimate tasks.