基于在线词典学习的高光谱压缩感知

Irem Ülkü, Ersin Kızgut
{"title":"基于在线词典学习的高光谱压缩感知","authors":"Irem Ülkü, Ersin Kızgut","doi":"10.1364/ISA.2017.ITH4E.1","DOIUrl":null,"url":null,"abstract":"This is the first time that blind compressive sensing (BCS) is used with online dictionary learning in hyperspectral image compression. BCS is among the best three algorithms in terms of compression performance at high ratios.","PeriodicalId":263258,"journal":{"name":"Rundbrief Der Gi-fachgruppe 5.10 Informationssystem-architekturen","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hyperspectral Compressive Sensing based on Online Dictionary Learning\",\"authors\":\"Irem Ülkü, Ersin Kızgut\",\"doi\":\"10.1364/ISA.2017.ITH4E.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This is the first time that blind compressive sensing (BCS) is used with online dictionary learning in hyperspectral image compression. BCS is among the best three algorithms in terms of compression performance at high ratios.\",\"PeriodicalId\":263258,\"journal\":{\"name\":\"Rundbrief Der Gi-fachgruppe 5.10 Informationssystem-architekturen\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rundbrief Der Gi-fachgruppe 5.10 Informationssystem-architekturen\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/ISA.2017.ITH4E.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rundbrief Der Gi-fachgruppe 5.10 Informationssystem-architekturen","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/ISA.2017.ITH4E.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

这是首次将盲压缩感知(BCS)与在线字典学习结合在高光谱图像压缩中。BCS在高比率下的压缩性能是三种算法中最好的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hyperspectral Compressive Sensing based on Online Dictionary Learning
This is the first time that blind compressive sensing (BCS) is used with online dictionary learning in hyperspectral image compression. BCS is among the best three algorithms in terms of compression performance at high ratios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High Resolution Table-top Coherent Diffractive Imaging of Extended Samples Materials degrees of freedom for optical design Holographic Imaging through Extended Scattering Media under Extreme Attenuation Matched-Filter Compressive Imaging using a Deformable Mirror for Label-Free Flow Cytometry Computational Cannula Microscopy: Fluorescent imaging through ultra-thin glass needle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1