减少功能即服务响应延迟的调度方法

P. Żuk, K. Rządca
{"title":"减少功能即服务响应延迟的调度方法","authors":"P. Żuk, K. Rządca","doi":"10.1109/SBAC-PAD49847.2020.00028","DOIUrl":null,"url":null,"abstract":"Function as a Service (FaaS) permits cloud customers to deploy to cloud individual functions, in contrast to complete virtual machines or Linux containers. All major cloud providers offer FaaS products (Amazon Lambda, Google Cloud Functions, Azure Serverless); there are also popular open-source implementations (Apache OpenWhisk) with commercial offerings (Adobe I/O Runtime, IBM Cloud Functions). A new feature of FaaS is function composition: a function may (sequentially) call another function, which, in turn, may call yet another function - forming a chain of invocations. From the perspective of the infrastructure, a composed FaaS is less opaque than a virtual machine or a container. We show that this additional information enables the infrastructure to reduce the response latency. In particular, knowing the sequence of future invocations, the infrastructure can schedule these invocations along with environment preparation. We model resource management in FaaS as a scheduling problem combining (1) sequencing of invocations, (2) deploying execution environments on machines, and (3) allocating invocations to deployed environments. For each aspect, we propose heuristics. We explore their performance by simulation on a range of synthetic workloads. Our results show that if the setup times are long compared to invocation times, algorithms that use information about the composition of functions consistently outperform greedy, myopic algorithms, leading to significant decrease in response latency.","PeriodicalId":202581,"journal":{"name":"2020 IEEE 32nd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Scheduling Methods to Reduce Response Latency of Function as a Service\",\"authors\":\"P. Żuk, K. Rządca\",\"doi\":\"10.1109/SBAC-PAD49847.2020.00028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Function as a Service (FaaS) permits cloud customers to deploy to cloud individual functions, in contrast to complete virtual machines or Linux containers. All major cloud providers offer FaaS products (Amazon Lambda, Google Cloud Functions, Azure Serverless); there are also popular open-source implementations (Apache OpenWhisk) with commercial offerings (Adobe I/O Runtime, IBM Cloud Functions). A new feature of FaaS is function composition: a function may (sequentially) call another function, which, in turn, may call yet another function - forming a chain of invocations. From the perspective of the infrastructure, a composed FaaS is less opaque than a virtual machine or a container. We show that this additional information enables the infrastructure to reduce the response latency. In particular, knowing the sequence of future invocations, the infrastructure can schedule these invocations along with environment preparation. We model resource management in FaaS as a scheduling problem combining (1) sequencing of invocations, (2) deploying execution environments on machines, and (3) allocating invocations to deployed environments. For each aspect, we propose heuristics. We explore their performance by simulation on a range of synthetic workloads. Our results show that if the setup times are long compared to invocation times, algorithms that use information about the composition of functions consistently outperform greedy, myopic algorithms, leading to significant decrease in response latency.\",\"PeriodicalId\":202581,\"journal\":{\"name\":\"2020 IEEE 32nd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 32nd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBAC-PAD49847.2020.00028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 32nd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBAC-PAD49847.2020.00028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

功能即服务(FaaS)允许云客户部署到云上的单个功能,而不是完整的虚拟机或Linux容器。所有主要的云提供商都提供FaaS产品(Amazon Lambda、Google cloud Functions、Azure Serverless);也有流行的开源实现(Apache OpenWhisk)和商业产品(Adobe I/O Runtime, IBM Cloud Functions)。FaaS的一个新特性是函数组合:一个函数可以(顺序地)调用另一个函数,而另一个函数又可以调用另一个函数——形成调用链。从基础设施的角度来看,组合FaaS比虚拟机或容器更透明。我们展示了这些附加信息使基础设施能够减少响应延迟。特别是,在了解了未来调用的顺序之后,基础设施可以将这些调用与环境准备一起调度。我们将FaaS中的资源管理建模为一个调度问题,该问题结合了(1)调用排序,(2)在机器上部署执行环境,以及(3)将调用分配到已部署环境。对于每个方面,我们都提出了启发式方法。我们通过模拟一系列合成工作负载来探索它们的性能。我们的结果表明,如果设置时间比调用时间长,那么使用函数组成信息的算法始终优于贪婪、短视的算法,从而显著降低响应延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scheduling Methods to Reduce Response Latency of Function as a Service
Function as a Service (FaaS) permits cloud customers to deploy to cloud individual functions, in contrast to complete virtual machines or Linux containers. All major cloud providers offer FaaS products (Amazon Lambda, Google Cloud Functions, Azure Serverless); there are also popular open-source implementations (Apache OpenWhisk) with commercial offerings (Adobe I/O Runtime, IBM Cloud Functions). A new feature of FaaS is function composition: a function may (sequentially) call another function, which, in turn, may call yet another function - forming a chain of invocations. From the perspective of the infrastructure, a composed FaaS is less opaque than a virtual machine or a container. We show that this additional information enables the infrastructure to reduce the response latency. In particular, knowing the sequence of future invocations, the infrastructure can schedule these invocations along with environment preparation. We model resource management in FaaS as a scheduling problem combining (1) sequencing of invocations, (2) deploying execution environments on machines, and (3) allocating invocations to deployed environments. For each aspect, we propose heuristics. We explore their performance by simulation on a range of synthetic workloads. Our results show that if the setup times are long compared to invocation times, algorithms that use information about the composition of functions consistently outperform greedy, myopic algorithms, leading to significant decrease in response latency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analyzing the Loop Scheduling Mechanisms on Julia Multithreading Reliable and Energy-aware Mapping of Streaming Series-parallel Applications onto Hierarchical Platforms High-Performance Low-Memory Lowering: GEMM-based Algorithms for DNN Convolution Energy-Efficient Time Series Analysis Using Transprecision Computing On-chip Parallel Photonic Reservoir Computing using Multiple Delay Lines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1