三维海量MIMO信道估计的加权快速迭代收缩阈值法

Ahmed Nasser, M. Elsabrouty, O. Muta
{"title":"三维海量MIMO信道估计的加权快速迭代收缩阈值法","authors":"Ahmed Nasser, M. Elsabrouty, O. Muta","doi":"10.1109/PIMRC.2017.8292556","DOIUrl":null,"url":null,"abstract":"Fitting the huge number of pilots needed for massive multiple inputs multiple outputs antennas (MIMO) channel estimation within the available time and frequency resources is a challenging problem. Generally, compressed sensing (CS) channel estimation algorithms face the dilemma of trading off the estimation accuracy and the computational complexity. In this paper, we propose a weighted fast iterative shrinkage thresholding algorithm (W-FISTA). The proposed algorithm provides higher estimation efficiency with the same complexity as the original FISTA. With low computational complexity, multiple measurement vectors (MMV) version of the W-FISTA is proposed to estimate the 3D massive MIMO channel. The proposed MMV-WFISTA estimate the channel coefficients by exploiting its joint sparsity structure in the angle-delay sparse domain. The complexity analysis and the simulation results indicate a clear improvement in the performance of the proposed MMV-WFISTA over joint estimation algorithms.","PeriodicalId":397107,"journal":{"name":"2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Weighted fast iterative shrinkage thresholding for 3D massive MIMO channel estimation\",\"authors\":\"Ahmed Nasser, M. Elsabrouty, O. Muta\",\"doi\":\"10.1109/PIMRC.2017.8292556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fitting the huge number of pilots needed for massive multiple inputs multiple outputs antennas (MIMO) channel estimation within the available time and frequency resources is a challenging problem. Generally, compressed sensing (CS) channel estimation algorithms face the dilemma of trading off the estimation accuracy and the computational complexity. In this paper, we propose a weighted fast iterative shrinkage thresholding algorithm (W-FISTA). The proposed algorithm provides higher estimation efficiency with the same complexity as the original FISTA. With low computational complexity, multiple measurement vectors (MMV) version of the W-FISTA is proposed to estimate the 3D massive MIMO channel. The proposed MMV-WFISTA estimate the channel coefficients by exploiting its joint sparsity structure in the angle-delay sparse domain. The complexity analysis and the simulation results indicate a clear improvement in the performance of the proposed MMV-WFISTA over joint estimation algorithms.\",\"PeriodicalId\":397107,\"journal\":{\"name\":\"2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIMRC.2017.8292556\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIMRC.2017.8292556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在可用的时间和频率资源内,拟合海量多输入多输出天线(MIMO)信道估计所需的大量导频是一个具有挑战性的问题。通常,压缩感知信道估计算法面临着估计精度和计算复杂度之间权衡的困境。本文提出了一种加权快速迭代收缩阈值算法(W-FISTA)。该算法在具有相同复杂度的基础上提高了估计效率。为了降低计算复杂度,提出了多测量向量(MMV)版本的W-FISTA来估计三维大规模MIMO信道。提出的MMV-WFISTA利用其角延迟稀疏域的联合稀疏结构估计信道系数。复杂度分析和仿真结果表明,与联合估计算法相比,所提出的MMV-WFISTA算法的性能有明显提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Weighted fast iterative shrinkage thresholding for 3D massive MIMO channel estimation
Fitting the huge number of pilots needed for massive multiple inputs multiple outputs antennas (MIMO) channel estimation within the available time and frequency resources is a challenging problem. Generally, compressed sensing (CS) channel estimation algorithms face the dilemma of trading off the estimation accuracy and the computational complexity. In this paper, we propose a weighted fast iterative shrinkage thresholding algorithm (W-FISTA). The proposed algorithm provides higher estimation efficiency with the same complexity as the original FISTA. With low computational complexity, multiple measurement vectors (MMV) version of the W-FISTA is proposed to estimate the 3D massive MIMO channel. The proposed MMV-WFISTA estimate the channel coefficients by exploiting its joint sparsity structure in the angle-delay sparse domain. The complexity analysis and the simulation results indicate a clear improvement in the performance of the proposed MMV-WFISTA over joint estimation algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RSSI-based self-localization with perturbed anchor positions Bit precision study of a non-orthogonal iterative detector with FPGA modelling verification Analytical approach to base station sleep mode power consumption and sleep depth Experimental over-the-air testing for coexistence of 4G and a spectrally efficient non-orthogonal signal Secrecy analysis of random wireless networks with multiple eavesdroppers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1