PLP:在群体感知中保护位置隐私免受相关分析攻击

Shanfeng Zhang, Q. Ma, Tong Zhu, Kebin Liu, Lan Zhang, Wenbo He, Yunhao Liu
{"title":"PLP:在群体感知中保护位置隐私免受相关分析攻击","authors":"Shanfeng Zhang, Q. Ma, Tong Zhu, Kebin Liu, Lan Zhang, Wenbo He, Yunhao Liu","doi":"10.1109/ICPP.2015.20","DOIUrl":null,"url":null,"abstract":"Crowdsensing applications require individuals toshare local and personal sensing data with others to produce valuableknowledge and services. Meanwhile, it has raised concernsespecially for location privacy. Users may wish to prevent privacyleak and publish as many non-sensitive contexts as possible.Simply suppressing sensitive contexts is vulnerable to the adversariesexploiting spatio-temporal correlations in users' behavior.In this work, we present PLP, a crowdsensing scheme whichpreserves privacy while maximizes the amount of data collectionby filtering a user's context stream. PLP leverages a conditionalrandom field to model the spatio-temporal correlations amongthe contexts, and proposes a speed-up algorithm to learn theweaknesses in the correlations. Even if the adversaries are strongenough to know the filtering system and the weaknesses, PLPcan still provably preserves privacy, with little computationalcost for online operations. PLP is evaluated and validated overtwo real-world smartphone context traces of 34 users. Theexperimental results show that PLP efficiently protects privacywithout sacrificing much utility.","PeriodicalId":423007,"journal":{"name":"2015 44th International Conference on Parallel Processing","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"PLP: Protecting Location Privacy Against Correlation-Analysis Attack in Crowdsensing\",\"authors\":\"Shanfeng Zhang, Q. Ma, Tong Zhu, Kebin Liu, Lan Zhang, Wenbo He, Yunhao Liu\",\"doi\":\"10.1109/ICPP.2015.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Crowdsensing applications require individuals toshare local and personal sensing data with others to produce valuableknowledge and services. Meanwhile, it has raised concernsespecially for location privacy. Users may wish to prevent privacyleak and publish as many non-sensitive contexts as possible.Simply suppressing sensitive contexts is vulnerable to the adversariesexploiting spatio-temporal correlations in users' behavior.In this work, we present PLP, a crowdsensing scheme whichpreserves privacy while maximizes the amount of data collectionby filtering a user's context stream. PLP leverages a conditionalrandom field to model the spatio-temporal correlations amongthe contexts, and proposes a speed-up algorithm to learn theweaknesses in the correlations. Even if the adversaries are strongenough to know the filtering system and the weaknesses, PLPcan still provably preserves privacy, with little computationalcost for online operations. PLP is evaluated and validated overtwo real-world smartphone context traces of 34 users. Theexperimental results show that PLP efficiently protects privacywithout sacrificing much utility.\",\"PeriodicalId\":423007,\"journal\":{\"name\":\"2015 44th International Conference on Parallel Processing\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 44th International Conference on Parallel Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPP.2015.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 44th International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2015.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

大众感知应用需要个人与他人分享本地和个人感知数据,以产生有价值的知识和服务。与此同时,它也引起了人们对位置隐私的关注。用户可能希望防止隐私泄露,并尽可能多地发布非敏感上下文。简单地抑制敏感上下文容易受到对手利用用户行为中的时空相关性的攻击。在这项工作中,我们提出了PLP,这是一种通过过滤用户的上下文流来保护隐私的同时最大化数据收集量的众感方案。PLP利用条件随机场来模拟上下文之间的时空相关性,并提出了一种加速算法来学习相关性中的弱点。即使对手足够强大,知道过滤系统和弱点,plp仍然可以证明保护隐私,几乎不需要在线操作的计算成本。PLP在34个用户的两个真实智能手机上下文轨迹上进行评估和验证。实验结果表明,PLP在不牺牲太多效用的前提下,有效地保护了隐私。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PLP: Protecting Location Privacy Against Correlation-Analysis Attack in Crowdsensing
Crowdsensing applications require individuals toshare local and personal sensing data with others to produce valuableknowledge and services. Meanwhile, it has raised concernsespecially for location privacy. Users may wish to prevent privacyleak and publish as many non-sensitive contexts as possible.Simply suppressing sensitive contexts is vulnerable to the adversariesexploiting spatio-temporal correlations in users' behavior.In this work, we present PLP, a crowdsensing scheme whichpreserves privacy while maximizes the amount of data collectionby filtering a user's context stream. PLP leverages a conditionalrandom field to model the spatio-temporal correlations amongthe contexts, and proposes a speed-up algorithm to learn theweaknesses in the correlations. Even if the adversaries are strongenough to know the filtering system and the weaknesses, PLPcan still provably preserves privacy, with little computationalcost for online operations. PLP is evaluated and validated overtwo real-world smartphone context traces of 34 users. Theexperimental results show that PLP efficiently protects privacywithout sacrificing much utility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Elastic and Efficient Virtual Network Provisioning for Cloud-Based Multi-tier Applications Design and Implementation of a Highly Efficient DGEMM for 64-Bit ARMv8 Multi-core Processors Leveraging Error Compensation to Minimize Time Deviation in Parallel Multi-core Simulations Crowdsourcing Sensing Workloads of Heterogeneous Tasks: A Distributed Fairness-Aware Approach TAPS: Software Defined Task-Level Deadline-Aware Preemptive Flow Scheduling in Data Centers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1