用于无线通信的特定于应用程序的指令集处理器(ASIP):设计、成本和能效与灵活性

H. Meyr
{"title":"用于无线通信的特定于应用程序的指令集处理器(ASIP):设计、成本和能效与灵活性","authors":"H. Meyr","doi":"10.1109/ISSOC.2004.1411050","DOIUrl":null,"url":null,"abstract":"Summary form only given. The next generation of wireless communication systems will be cognitive to efficiently use the available bandwidth. For a given criterion, these systems will adaptively select the transmission method, protocol and the services which are optimal at any given time. Sophisticated signal processing algorithms of ultra high complexity must be executed to perform this adaptation. To meet conflicting goals such as energy efficiency and flexibility together with cost, time-to-market and reusability constraints a radically different, truly innovative architectural approach is necessary for SoCs applied to wireless communications. These future SoCs can be viewed as heterogeneous multiprocessor systems (MP-SoC). They will contain an increasing number of application specific instruction-set processors (ASIPs) combined with complex memory hierarchies and on-chip communication networks (NoC). The success of the proposed MP-SoC is ultimately linked to the availability of an equally innovative system-level design (SLD) methodology together with the corresponding SLD tool suite. In this presentation, we address this innovative SLD design flow in the context of wireless communications. The focus of this presentation is primarily on one crucial aspect of this process: the spatial mapping of application tasks onto ASIPs.","PeriodicalId":268122,"journal":{"name":"2004 International Symposium on System-on-Chip, 2004. Proceedings.","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application specific instruction-set processors (ASIP's) for wireless communications: design, cost, and energy efficiency vs. flexibility\",\"authors\":\"H. Meyr\",\"doi\":\"10.1109/ISSOC.2004.1411050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary form only given. The next generation of wireless communication systems will be cognitive to efficiently use the available bandwidth. For a given criterion, these systems will adaptively select the transmission method, protocol and the services which are optimal at any given time. Sophisticated signal processing algorithms of ultra high complexity must be executed to perform this adaptation. To meet conflicting goals such as energy efficiency and flexibility together with cost, time-to-market and reusability constraints a radically different, truly innovative architectural approach is necessary for SoCs applied to wireless communications. These future SoCs can be viewed as heterogeneous multiprocessor systems (MP-SoC). They will contain an increasing number of application specific instruction-set processors (ASIPs) combined with complex memory hierarchies and on-chip communication networks (NoC). The success of the proposed MP-SoC is ultimately linked to the availability of an equally innovative system-level design (SLD) methodology together with the corresponding SLD tool suite. In this presentation, we address this innovative SLD design flow in the context of wireless communications. The focus of this presentation is primarily on one crucial aspect of this process: the spatial mapping of application tasks onto ASIPs.\",\"PeriodicalId\":268122,\"journal\":{\"name\":\"2004 International Symposium on System-on-Chip, 2004. Proceedings.\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2004 International Symposium on System-on-Chip, 2004. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSOC.2004.1411050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 International Symposium on System-on-Chip, 2004. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSOC.2004.1411050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

只提供摘要形式。下一代无线通信系统将是认知的,以有效地利用可用的带宽。对于给定的标准,这些系统将在任何给定的时间自适应地选择最优的传输方式、协议和服务。必须执行超高复杂度的复杂信号处理算法来执行这种自适应。为了满足诸如能源效率和灵活性以及成本、上市时间和可重用性限制等相互冲突的目标,应用于无线通信的soc需要一种完全不同的、真正创新的体系结构方法。这些未来的soc可以看作是异构多处理器系统(MP-SoC)。它们将包含越来越多的特定应用指令集处理器(asip),并结合复杂的内存层次结构和片上通信网络(NoC)。提议的MP-SoC的成功最终与同样创新的系统级设计(SLD)方法以及相应的SLD工具套件的可用性有关。在本次演讲中,我们将在无线通信的背景下讨论这种创新的SLD设计流程。本演讲的重点主要放在这个过程的一个关键方面:应用程序任务到api的空间映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application specific instruction-set processors (ASIP's) for wireless communications: design, cost, and energy efficiency vs. flexibility
Summary form only given. The next generation of wireless communication systems will be cognitive to efficiently use the available bandwidth. For a given criterion, these systems will adaptively select the transmission method, protocol and the services which are optimal at any given time. Sophisticated signal processing algorithms of ultra high complexity must be executed to perform this adaptation. To meet conflicting goals such as energy efficiency and flexibility together with cost, time-to-market and reusability constraints a radically different, truly innovative architectural approach is necessary for SoCs applied to wireless communications. These future SoCs can be viewed as heterogeneous multiprocessor systems (MP-SoC). They will contain an increasing number of application specific instruction-set processors (ASIPs) combined with complex memory hierarchies and on-chip communication networks (NoC). The success of the proposed MP-SoC is ultimately linked to the availability of an equally innovative system-level design (SLD) methodology together with the corresponding SLD tool suite. In this presentation, we address this innovative SLD design flow in the context of wireless communications. The focus of this presentation is primarily on one crucial aspect of this process: the spatial mapping of application tasks onto ASIPs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design reuse and design for reuse, a case study on HDSL2 Development of NSoC program in Taiwan Efficient barrier synchronization mechanism for emulated shared memory NOCs Evaluation of platform architecture performance using abstract instruction-level workload models Assertion based verification of PSL for SystemC designs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1