让我们变得个性化:探索个性化可视化的设计

Beleicia B. Bullock, Shunan Guo, E. Koh, R. Rossi, F. Du, J. Hoffswell
{"title":"让我们变得个性化:探索个性化可视化的设计","authors":"Beleicia B. Bullock, Shunan Guo, E. Koh, R. Rossi, F. Du, J. Hoffswell","doi":"10.1109/VIS54862.2022.00026","DOIUrl":null,"url":null,"abstract":"Media outlets often publish visualizations that can be personalized based on users' demographics, such as location, race, and age. However, the design of such personalized visualizations remains under-explored. In this work, we contribute a design space analysis of 47 public-facing articles with personalized visualizations to understand how designers structure content, encourage exploration, and present insights. We find that articles often lack explicit exploration suggestions or instructions, data notices, and personalized visual insights. We then outline three trajectories for future research: (1) explore how users choose to personalize visualizations, (2) examine how exploration suggestions and examples impact user interaction, and (3) investigate how personalization influences user insights.","PeriodicalId":190244,"journal":{"name":"2022 IEEE Visualization and Visual Analytics (VIS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Let's Get Personal: Exploring the Design of Personalized Visualizations\",\"authors\":\"Beleicia B. Bullock, Shunan Guo, E. Koh, R. Rossi, F. Du, J. Hoffswell\",\"doi\":\"10.1109/VIS54862.2022.00026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Media outlets often publish visualizations that can be personalized based on users' demographics, such as location, race, and age. However, the design of such personalized visualizations remains under-explored. In this work, we contribute a design space analysis of 47 public-facing articles with personalized visualizations to understand how designers structure content, encourage exploration, and present insights. We find that articles often lack explicit exploration suggestions or instructions, data notices, and personalized visual insights. We then outline three trajectories for future research: (1) explore how users choose to personalize visualizations, (2) examine how exploration suggestions and examples impact user interaction, and (3) investigate how personalization influences user insights.\",\"PeriodicalId\":190244,\"journal\":{\"name\":\"2022 IEEE Visualization and Visual Analytics (VIS)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Visualization and Visual Analytics (VIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VIS54862.2022.00026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Visualization and Visual Analytics (VIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VIS54862.2022.00026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

媒体经常发布可视化,这些可视化可以根据用户的人口统计数据(如位置、种族和年龄)进行个性化。然而,这种个性化可视化的设计仍未得到充分探索。在这项工作中,我们对47篇面向公众的个性化可视化文章进行了设计空间分析,以了解设计师如何构建内容,鼓励探索和呈现见解。我们发现文章往往缺乏明确的探索建议或说明,数据通知,以及个性化的视觉洞察。然后,我们概述了未来研究的三个轨迹:(1)探索用户如何选择个性化可视化,(2)研究探索建议和示例如何影响用户交互,以及(3)研究个性化如何影响用户洞察力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Let's Get Personal: Exploring the Design of Personalized Visualizations
Media outlets often publish visualizations that can be personalized based on users' demographics, such as location, race, and age. However, the design of such personalized visualizations remains under-explored. In this work, we contribute a design space analysis of 47 public-facing articles with personalized visualizations to understand how designers structure content, encourage exploration, and present insights. We find that articles often lack explicit exploration suggestions or instructions, data notices, and personalized visual insights. We then outline three trajectories for future research: (1) explore how users choose to personalize visualizations, (2) examine how exploration suggestions and examples impact user interaction, and (3) investigate how personalization influences user insights.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Paths Through Spatial Networks Explaining Website Reliability by Visualizing Hyperlink Connectivity Volume Puzzle: visual analysis of segmented volume data with multivariate attributes VIS 2022 Program Committee The role of extended reality for planning coronary artery bypass graft surgery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1