{"title":"基于强化学习的Agent双边多议题竞价协商协议及其在电子商务中的应用","authors":"Li Jian","doi":"10.1109/ISECS.2008.102","DOIUrl":null,"url":null,"abstract":"With the rapid development of multi-agent based E-commerce systems, on-line automatic negotiation protocol is often needed. But because of incomplete information agents have, the efficiency of on-line negotiation protocol is rather low. To overcome the problem, an on-line agent bilateral multi-issue alternate bidding negotiation protocol based on reinforcement learning is present. The reinforcement learning algorithm is presented to on-line learn the incomplete information of negotiation agent to enhance the efficiency of negotiation protocol. The protocol is applied to on-line multi-agent based electronic commerce. In the protocol experiment, three kinds of agents are used to compare with, which are no-learning agents (NA), static learning agents (SA) and dynamic learning agent (DA) in this paper. In static learning agent, the learning rate of Q-learning is set to 0.1 unchangeable, so itpsilas called static learning. While in dynamic learning proposed in this paper, the learning rate of Q-learning can change dynamically, so itpsilas called dynamic learning. Experiments show that the protocol present in this paper can help agents to negotiate more efficiently.","PeriodicalId":144075,"journal":{"name":"2008 International Symposium on Electronic Commerce and Security","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"An Agent Bilateral Multi-issue Alternate Bidding Negotiation Protocol Based on Reinforcement Learning and its Application in E-commerce\",\"authors\":\"Li Jian\",\"doi\":\"10.1109/ISECS.2008.102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of multi-agent based E-commerce systems, on-line automatic negotiation protocol is often needed. But because of incomplete information agents have, the efficiency of on-line negotiation protocol is rather low. To overcome the problem, an on-line agent bilateral multi-issue alternate bidding negotiation protocol based on reinforcement learning is present. The reinforcement learning algorithm is presented to on-line learn the incomplete information of negotiation agent to enhance the efficiency of negotiation protocol. The protocol is applied to on-line multi-agent based electronic commerce. In the protocol experiment, three kinds of agents are used to compare with, which are no-learning agents (NA), static learning agents (SA) and dynamic learning agent (DA) in this paper. In static learning agent, the learning rate of Q-learning is set to 0.1 unchangeable, so itpsilas called static learning. While in dynamic learning proposed in this paper, the learning rate of Q-learning can change dynamically, so itpsilas called dynamic learning. Experiments show that the protocol present in this paper can help agents to negotiate more efficiently.\",\"PeriodicalId\":144075,\"journal\":{\"name\":\"2008 International Symposium on Electronic Commerce and Security\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Symposium on Electronic Commerce and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISECS.2008.102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Symposium on Electronic Commerce and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISECS.2008.102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Agent Bilateral Multi-issue Alternate Bidding Negotiation Protocol Based on Reinforcement Learning and its Application in E-commerce
With the rapid development of multi-agent based E-commerce systems, on-line automatic negotiation protocol is often needed. But because of incomplete information agents have, the efficiency of on-line negotiation protocol is rather low. To overcome the problem, an on-line agent bilateral multi-issue alternate bidding negotiation protocol based on reinforcement learning is present. The reinforcement learning algorithm is presented to on-line learn the incomplete information of negotiation agent to enhance the efficiency of negotiation protocol. The protocol is applied to on-line multi-agent based electronic commerce. In the protocol experiment, three kinds of agents are used to compare with, which are no-learning agents (NA), static learning agents (SA) and dynamic learning agent (DA) in this paper. In static learning agent, the learning rate of Q-learning is set to 0.1 unchangeable, so itpsilas called static learning. While in dynamic learning proposed in this paper, the learning rate of Q-learning can change dynamically, so itpsilas called dynamic learning. Experiments show that the protocol present in this paper can help agents to negotiate more efficiently.