过低功耗数字应用的垂直隧道-场效应管分析

Shailendra Singh, B. Raj
{"title":"过低功耗数字应用的垂直隧道-场效应管分析","authors":"Shailendra Singh, B. Raj","doi":"10.1109/ICSCCC.2018.8703312","DOIUrl":null,"url":null,"abstract":"In this paper we study for the imminent novel Vertical Tunnel-FET(TFET) fascinating device for excessive low power digital circuit application because of its Subthreshold slope or swing (S) and low I-OFF current. As MOSFET are scaled down below the 45nm, the problems arises such as short channel effects, the I-OFF leakage current grow drastically because to the non-versatility of edge voltage as the Subthreshold Slope or swing (S) is restricted to 60mV/decade. As Tunnel FETs smothered the point of confinement of 60mV/decade by utilizing quantum-mechanical Band-2-Band Tunneling (B2BT) due to which the performance of this circuit for low power applications improved. This outline paper will examine about the substitution of the CMOS with different structures among which Vertical Tunnel Field Effect Transistor (TFET) found to be greater energy efficiency with improved $\\mathrm{I}_{\\mathrm{O}\\mathrm{N}}$ current which is thought to be the most basic plan parameter for pervasive and portable processing frameworks.","PeriodicalId":148491,"journal":{"name":"2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Vertical Tunnel-FET Analysis for Excessive Low Power Digital Applications\",\"authors\":\"Shailendra Singh, B. Raj\",\"doi\":\"10.1109/ICSCCC.2018.8703312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study for the imminent novel Vertical Tunnel-FET(TFET) fascinating device for excessive low power digital circuit application because of its Subthreshold slope or swing (S) and low I-OFF current. As MOSFET are scaled down below the 45nm, the problems arises such as short channel effects, the I-OFF leakage current grow drastically because to the non-versatility of edge voltage as the Subthreshold Slope or swing (S) is restricted to 60mV/decade. As Tunnel FETs smothered the point of confinement of 60mV/decade by utilizing quantum-mechanical Band-2-Band Tunneling (B2BT) due to which the performance of this circuit for low power applications improved. This outline paper will examine about the substitution of the CMOS with different structures among which Vertical Tunnel Field Effect Transistor (TFET) found to be greater energy efficiency with improved $\\\\mathrm{I}_{\\\\mathrm{O}\\\\mathrm{N}}$ current which is thought to be the most basic plan parameter for pervasive and portable processing frameworks.\",\"PeriodicalId\":148491,\"journal\":{\"name\":\"2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC)\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSCCC.2018.8703312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCCC.2018.8703312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文针对即将出现的新型垂直隧道-场效应晶体管(TFET)迷人器件进行了研究,该器件由于其亚阈值斜率或摆幅(S)和低I-OFF电流而应用于过低功耗数字电路。当MOSFET缩小到45nm以下时,出现了诸如短通道效应等问题,由于亚阈值斜率或摆幅(S)被限制在60mV/ 10年,边缘电压的非通用性导致I-OFF泄漏电流急剧增长。隧道场效应管通过利用量子力学的带-2-带隧道效应(B2BT)达到了60mV/ 10的限制点,从而提高了该电路在低功耗应用中的性能。本文将研究不同结构的CMOS的替代,其中垂直隧道场效应晶体管(ttfet)发现具有更高的能量效率,并改善了$\ mathm {I}_{\ mathm {O}\ mathm {N}}$电流,这被认为是普适和便携式处理框架的最基本的平面参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vertical Tunnel-FET Analysis for Excessive Low Power Digital Applications
In this paper we study for the imminent novel Vertical Tunnel-FET(TFET) fascinating device for excessive low power digital circuit application because of its Subthreshold slope or swing (S) and low I-OFF current. As MOSFET are scaled down below the 45nm, the problems arises such as short channel effects, the I-OFF leakage current grow drastically because to the non-versatility of edge voltage as the Subthreshold Slope or swing (S) is restricted to 60mV/decade. As Tunnel FETs smothered the point of confinement of 60mV/decade by utilizing quantum-mechanical Band-2-Band Tunneling (B2BT) due to which the performance of this circuit for low power applications improved. This outline paper will examine about the substitution of the CMOS with different structures among which Vertical Tunnel Field Effect Transistor (TFET) found to be greater energy efficiency with improved $\mathrm{I}_{\mathrm{O}\mathrm{N}}$ current which is thought to be the most basic plan parameter for pervasive and portable processing frameworks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
To Alleviate The Flooding Attack and Intensify Efficiency in MANET Deep Leaming Approaches for Brain Tumor Segmentation: A Review Q-AODV: A Flood control Ad-Hoc on Demand Distance Vector Routing Protocol Sentimental Analysis On Social Feeds to Predict the Elections A Comparative study of various Video Tampering detection methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1