粒子群优化中的劳动分工

J. Vesterstrom, J. Riget, T. Krink
{"title":"粒子群优化中的劳动分工","authors":"J. Vesterstrom, J. Riget, T. Krink","doi":"10.1109/CEC.2002.1004476","DOIUrl":null,"url":null,"abstract":"We introduce Division of Labor (DoL) from social insects to improve local optimisation of the Particle Swarm Optimiser (PSO). We compared the performance with the basic PSO, a GA and simulated annealing and found improvements around local optima. The PSO with DoL outperforms the basic PSO on most testcases and is comparable in local optimisation with SA.","PeriodicalId":184547,"journal":{"name":"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"85","resultStr":"{\"title\":\"Division of labor in particle swarm optimisation\",\"authors\":\"J. Vesterstrom, J. Riget, T. Krink\",\"doi\":\"10.1109/CEC.2002.1004476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce Division of Labor (DoL) from social insects to improve local optimisation of the Particle Swarm Optimiser (PSO). We compared the performance with the basic PSO, a GA and simulated annealing and found improvements around local optima. The PSO with DoL outperforms the basic PSO on most testcases and is comparable in local optimisation with SA.\",\"PeriodicalId\":184547,\"journal\":{\"name\":\"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"85\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2002.1004476\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2002.1004476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 85

摘要

为了改进粒子群优化器(PSO)的局部优化,我们引入了社会性昆虫的劳动分工(DoL)。我们将其性能与基本粒子群算法、遗传算法和模拟退火算法进行了比较,并在局部最优处发现了改进。具有DoL的粒子群在大多数测试用例中优于基本粒子群,并且在局部优化方面与SA相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Division of labor in particle swarm optimisation
We introduce Division of Labor (DoL) from social insects to improve local optimisation of the Particle Swarm Optimiser (PSO). We compared the performance with the basic PSO, a GA and simulated annealing and found improvements around local optima. The PSO with DoL outperforms the basic PSO on most testcases and is comparable in local optimisation with SA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of FPGA based adaptive image enhancement filter system using genetic algorithms Intelligent predictive control of a power plant with evolutionary programming optimizer and neuro-fuzzy identifier Blocked stochastic sampling versus Estimation of Distribution Algorithms Distinguishing adaptive from non-adaptive evolution using Ashby's law of requisite variety An artificial immune network for multimodal function optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1