基于LADAR数据的城市环境中建筑物的鲁棒检测和识别

R. Madhavan, T. Hong
{"title":"基于LADAR数据的城市环境中建筑物的鲁棒检测和识别","authors":"R. Madhavan, T. Hong","doi":"10.1109/AIPR.2004.40","DOIUrl":null,"url":null,"abstract":"Successful unmanned ground vehicle (UGV) navigation in urban areas requires the competence of the vehicle to cope with Global Positioning System (GPS) outages and/or unreliable position estimates due to multipathing. At the National Institute of Standards and Technology (NIST) we are developing registration algorithms using LADAR (LAser Detection And Ranging) data to cope with such scenarios. In this paper, we present a building detection and recognition (BDR) algorithm using LADAR range images acquired from UGVs towards reliable and efficient registration. We verify the proposed algorithms using field data obtained from a Riegl LADAR range sensor mounted on a UGV operating in a variety of unknown urban environments. The presented results show the robustness and efficacy of the BDR algorithm.","PeriodicalId":120814,"journal":{"name":"33rd Applied Imagery Pattern Recognition Workshop (AIPR'04)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Robust detection and recognition of buildings in urban environments from LADAR data\",\"authors\":\"R. Madhavan, T. Hong\",\"doi\":\"10.1109/AIPR.2004.40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Successful unmanned ground vehicle (UGV) navigation in urban areas requires the competence of the vehicle to cope with Global Positioning System (GPS) outages and/or unreliable position estimates due to multipathing. At the National Institute of Standards and Technology (NIST) we are developing registration algorithms using LADAR (LAser Detection And Ranging) data to cope with such scenarios. In this paper, we present a building detection and recognition (BDR) algorithm using LADAR range images acquired from UGVs towards reliable and efficient registration. We verify the proposed algorithms using field data obtained from a Riegl LADAR range sensor mounted on a UGV operating in a variety of unknown urban environments. The presented results show the robustness and efficacy of the BDR algorithm.\",\"PeriodicalId\":120814,\"journal\":{\"name\":\"33rd Applied Imagery Pattern Recognition Workshop (AIPR'04)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"33rd Applied Imagery Pattern Recognition Workshop (AIPR'04)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIPR.2004.40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"33rd Applied Imagery Pattern Recognition Workshop (AIPR'04)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2004.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

无人地面车辆(UGV)在城市地区的成功导航需要车辆能够应对全球定位系统(GPS)中断和/或由于多路径导致的不可靠位置估计。在美国国家标准与技术研究所(NIST),我们正在开发使用LADAR(激光探测和测距)数据的注册算法来应对这种情况。本文提出了一种基于地面车辆雷达距离图像的建筑物检测与识别(BDR)算法,以实现可靠、高效的配准。我们使用安装在UGV上的Riegl LADAR距离传感器获得的现场数据验证了所提出的算法,该传感器在各种未知的城市环境中运行。实验结果表明了BDR算法的鲁棒性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust detection and recognition of buildings in urban environments from LADAR data
Successful unmanned ground vehicle (UGV) navigation in urban areas requires the competence of the vehicle to cope with Global Positioning System (GPS) outages and/or unreliable position estimates due to multipathing. At the National Institute of Standards and Technology (NIST) we are developing registration algorithms using LADAR (LAser Detection And Ranging) data to cope with such scenarios. In this paper, we present a building detection and recognition (BDR) algorithm using LADAR range images acquired from UGVs towards reliable and efficient registration. We verify the proposed algorithms using field data obtained from a Riegl LADAR range sensor mounted on a UGV operating in a variety of unknown urban environments. The presented results show the robustness and efficacy of the BDR algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Top-down approach to segmentation of prostate boundaries in ultrasound images Computation in the higher visual cortices: map-seeking circuit theory and application to machine vision Neurally-based algorithms for image processing Image primitive signatures A multiresolution time domain approach to RF image formation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1