基于指数密度和高斯参数密度混合模型的稳定ICA算法

Kefeng Wang, Xu Xu, Chonghui Guo
{"title":"基于指数密度和高斯参数密度混合模型的稳定ICA算法","authors":"Kefeng Wang, Xu Xu, Chonghui Guo","doi":"10.1109/ICAWST.2011.6163158","DOIUrl":null,"url":null,"abstract":"Independent Component Analysis (ICA) is an effective method to solve the problem of Blind Source Separation (BSS). In this paper, a new algorithm is proposed to separate signals mixtured by sub-Gaussian, super-Gaussian, symmetric and asymmetric sources. Alternative score functions in the algorithm are derived by using exponent density model and Gaussian parametric density mixture model. The score functions are selfadaptive through estimating the high-order moments of original signals. Moreover, a stability condition for the proposed algorithm is given to guarantee separating the true solution. Simulations are presented to illustrate the performance and effectiveness of the proposed algorithm.","PeriodicalId":126169,"journal":{"name":"2011 3rd International Conference on Awareness Science and Technology (iCAST)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A stable ICA algorithm based on exponent density and Gaussian parametric density mixture models\",\"authors\":\"Kefeng Wang, Xu Xu, Chonghui Guo\",\"doi\":\"10.1109/ICAWST.2011.6163158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Independent Component Analysis (ICA) is an effective method to solve the problem of Blind Source Separation (BSS). In this paper, a new algorithm is proposed to separate signals mixtured by sub-Gaussian, super-Gaussian, symmetric and asymmetric sources. Alternative score functions in the algorithm are derived by using exponent density model and Gaussian parametric density mixture model. The score functions are selfadaptive through estimating the high-order moments of original signals. Moreover, a stability condition for the proposed algorithm is given to guarantee separating the true solution. Simulations are presented to illustrate the performance and effectiveness of the proposed algorithm.\",\"PeriodicalId\":126169,\"journal\":{\"name\":\"2011 3rd International Conference on Awareness Science and Technology (iCAST)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 3rd International Conference on Awareness Science and Technology (iCAST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAWST.2011.6163158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 3rd International Conference on Awareness Science and Technology (iCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAWST.2011.6163158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

独立分量分析(ICA)是解决盲源分离问题的有效方法。本文提出了一种分离亚高斯、超高斯、对称和非对称混合信号的新算法。采用指数密度模型和高斯参数密度混合模型推导了算法中的备选分数函数。分数函数通过估计原始信号的高阶矩实现自适应。此外,给出了算法的稳定性条件,以保证分离出真解。仿真结果验证了该算法的性能和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A stable ICA algorithm based on exponent density and Gaussian parametric density mixture models
Independent Component Analysis (ICA) is an effective method to solve the problem of Blind Source Separation (BSS). In this paper, a new algorithm is proposed to separate signals mixtured by sub-Gaussian, super-Gaussian, symmetric and asymmetric sources. Alternative score functions in the algorithm are derived by using exponent density model and Gaussian parametric density mixture model. The score functions are selfadaptive through estimating the high-order moments of original signals. Moreover, a stability condition for the proposed algorithm is given to guarantee separating the true solution. Simulations are presented to illustrate the performance and effectiveness of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification Network of tourism information A smart phone-based system for supporting “Petit Trips” Semi-automated paper-registration system for institutional repository Visualization of tourism information using WordNet Dynamic noise reduction algorithm based on time-variety filter Design of a 3D localization method for searching survivors after an earthquake based on WSN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1