{"title":"船用燃气轮机气动优化设计系统研究","authors":"Xiying Niu, Feng Lin, Weiyan Xiao, Guoqiang Li, Chen Liang","doi":"10.1115/GT2018-76617","DOIUrl":null,"url":null,"abstract":"A turbine aerodynamic optimization design system for marine gas turbines has been investigated to accelerate the turbine aerodynamic design process and perfect the research and development platform. The data can be conversed automatically with the self-compiling programs which integrate the 1D, S2 module of Concepts NREC, three dimensional modeling, analysis, and optimization of NUMECA. At the same time, the system can satisfy multilevel optimization design easily for different requirements. And the system has been used in the optimization design of a marine gas turbine. The results show that the design period can be reduced; after optimization the efficiency is improved about one percent; and the off-design performance is improved due to the rear loading technology.","PeriodicalId":114672,"journal":{"name":"Volume 1: Aircraft Engine; Fans and Blowers; Marine","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Turbine Aerodynamic Optimization Design System for Marine Gas Turbines\",\"authors\":\"Xiying Niu, Feng Lin, Weiyan Xiao, Guoqiang Li, Chen Liang\",\"doi\":\"10.1115/GT2018-76617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A turbine aerodynamic optimization design system for marine gas turbines has been investigated to accelerate the turbine aerodynamic design process and perfect the research and development platform. The data can be conversed automatically with the self-compiling programs which integrate the 1D, S2 module of Concepts NREC, three dimensional modeling, analysis, and optimization of NUMECA. At the same time, the system can satisfy multilevel optimization design easily for different requirements. And the system has been used in the optimization design of a marine gas turbine. The results show that the design period can be reduced; after optimization the efficiency is improved about one percent; and the off-design performance is improved due to the rear loading technology.\",\"PeriodicalId\":114672,\"journal\":{\"name\":\"Volume 1: Aircraft Engine; Fans and Blowers; Marine\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Aircraft Engine; Fans and Blowers; Marine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/GT2018-76617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Aircraft Engine; Fans and Blowers; Marine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/GT2018-76617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigation of Turbine Aerodynamic Optimization Design System for Marine Gas Turbines
A turbine aerodynamic optimization design system for marine gas turbines has been investigated to accelerate the turbine aerodynamic design process and perfect the research and development platform. The data can be conversed automatically with the self-compiling programs which integrate the 1D, S2 module of Concepts NREC, three dimensional modeling, analysis, and optimization of NUMECA. At the same time, the system can satisfy multilevel optimization design easily for different requirements. And the system has been used in the optimization design of a marine gas turbine. The results show that the design period can be reduced; after optimization the efficiency is improved about one percent; and the off-design performance is improved due to the rear loading technology.