{"title":"行星大气中的喷流","authors":"T. Dowling","doi":"10.1093/ACREFORE/9780190647926.013.116","DOIUrl":null,"url":null,"abstract":"Jet streams, “jets” for short, are remarkably coherent streams of air found in every major atmosphere. They have a profound effect on a planet’s global circulation and have been an enigma since the belts and zones of Jupiter were discovered in the 1600s. Collaborations between observers, experimentalists, computer modelers, and applied mathematicians seek to understand what processes affect jet size, strength, direction, shear stability, and predictability. Key challenges include nonlinearity, nonintuitive wave physics, nonconstant-coefficient differential equations, and the many nondimensional numbers that arise from the competing physical processes that affect jets, including gravity, pressure gradients, Coriolis accelerations, and turbulence. Fortunately, the solar system provides many examples of jets, and both laboratory and computer simulations allow for carefully controlled experiments. Jet research is multidisciplinary but is united by a common language, the conservation of potential vorticity (PV), which is an all-in-one conservation law that combines the conservation laws of mass, momentum, and thermal energy into a single expression. The leading theories of how jets emerge out of turbulence, and why they are invariably zonal (east-west orientated), reveal the importance of vorticity waves that owe their existence to conservation of PV.\n Jets are observed to naturally group into equatorial, midlatitude, and polar types. Earth and Uranus have weakly retrograde equatorial jets, but most planets exhibit strongly prograde (superrotating) equatorial jets, which require eddies to transport momentum up-gradient in a manner that is not obvious but is beginning to be understood. Jupiter and Saturn exhibit multiple alternating jets spanning their midlatitudes, with deep roots that connect to their interior circulations. Polar jets universally exhibit an impressive inhibition of meridional (north-south) mixing, and the seasonal nature of the polar jets on Earth, Mars, and Titan contrasts with the permanence of those on the giant planets, including Saturn’s beautiful north-polar hexagon. Intriguingly, jets in atmospheres have strong analogies with jets in nonneutral plasmas, with practical benefits to both disciplines.","PeriodicalId":304611,"journal":{"name":"Oxford Research Encyclopedia of Planetary Science","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Jets in Planetary Atmospheres\",\"authors\":\"T. Dowling\",\"doi\":\"10.1093/ACREFORE/9780190647926.013.116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Jet streams, “jets” for short, are remarkably coherent streams of air found in every major atmosphere. They have a profound effect on a planet’s global circulation and have been an enigma since the belts and zones of Jupiter were discovered in the 1600s. Collaborations between observers, experimentalists, computer modelers, and applied mathematicians seek to understand what processes affect jet size, strength, direction, shear stability, and predictability. Key challenges include nonlinearity, nonintuitive wave physics, nonconstant-coefficient differential equations, and the many nondimensional numbers that arise from the competing physical processes that affect jets, including gravity, pressure gradients, Coriolis accelerations, and turbulence. Fortunately, the solar system provides many examples of jets, and both laboratory and computer simulations allow for carefully controlled experiments. Jet research is multidisciplinary but is united by a common language, the conservation of potential vorticity (PV), which is an all-in-one conservation law that combines the conservation laws of mass, momentum, and thermal energy into a single expression. The leading theories of how jets emerge out of turbulence, and why they are invariably zonal (east-west orientated), reveal the importance of vorticity waves that owe their existence to conservation of PV.\\n Jets are observed to naturally group into equatorial, midlatitude, and polar types. Earth and Uranus have weakly retrograde equatorial jets, but most planets exhibit strongly prograde (superrotating) equatorial jets, which require eddies to transport momentum up-gradient in a manner that is not obvious but is beginning to be understood. Jupiter and Saturn exhibit multiple alternating jets spanning their midlatitudes, with deep roots that connect to their interior circulations. Polar jets universally exhibit an impressive inhibition of meridional (north-south) mixing, and the seasonal nature of the polar jets on Earth, Mars, and Titan contrasts with the permanence of those on the giant planets, including Saturn’s beautiful north-polar hexagon. Intriguingly, jets in atmospheres have strong analogies with jets in nonneutral plasmas, with practical benefits to both disciplines.\",\"PeriodicalId\":304611,\"journal\":{\"name\":\"Oxford Research Encyclopedia of Planetary Science\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oxford Research Encyclopedia of Planetary Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ACREFORE/9780190647926.013.116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxford Research Encyclopedia of Planetary Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ACREFORE/9780190647926.013.116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Jet streams, “jets” for short, are remarkably coherent streams of air found in every major atmosphere. They have a profound effect on a planet’s global circulation and have been an enigma since the belts and zones of Jupiter were discovered in the 1600s. Collaborations between observers, experimentalists, computer modelers, and applied mathematicians seek to understand what processes affect jet size, strength, direction, shear stability, and predictability. Key challenges include nonlinearity, nonintuitive wave physics, nonconstant-coefficient differential equations, and the many nondimensional numbers that arise from the competing physical processes that affect jets, including gravity, pressure gradients, Coriolis accelerations, and turbulence. Fortunately, the solar system provides many examples of jets, and both laboratory and computer simulations allow for carefully controlled experiments. Jet research is multidisciplinary but is united by a common language, the conservation of potential vorticity (PV), which is an all-in-one conservation law that combines the conservation laws of mass, momentum, and thermal energy into a single expression. The leading theories of how jets emerge out of turbulence, and why they are invariably zonal (east-west orientated), reveal the importance of vorticity waves that owe their existence to conservation of PV.
Jets are observed to naturally group into equatorial, midlatitude, and polar types. Earth and Uranus have weakly retrograde equatorial jets, but most planets exhibit strongly prograde (superrotating) equatorial jets, which require eddies to transport momentum up-gradient in a manner that is not obvious but is beginning to be understood. Jupiter and Saturn exhibit multiple alternating jets spanning their midlatitudes, with deep roots that connect to their interior circulations. Polar jets universally exhibit an impressive inhibition of meridional (north-south) mixing, and the seasonal nature of the polar jets on Earth, Mars, and Titan contrasts with the permanence of those on the giant planets, including Saturn’s beautiful north-polar hexagon. Intriguingly, jets in atmospheres have strong analogies with jets in nonneutral plasmas, with practical benefits to both disciplines.