{"title":"量词深度的近最优下界和Weisfeiler-Leman细化步骤","authors":"Christoph Berkholz, Jakob Nordström","doi":"10.1145/2933575.2934560","DOIUrl":null,"url":null,"abstract":"We prove near-optimal trade-offs for quantifier depth versus number of variables in first-order logic by exhibiting pairs of n-element structures that can be distinguished by a k-variable first-order sentence but where every such sentence requires quantifier depth at least nΩ(k/ log k). Our trade-offs also apply to first-order counting logic, and by the known connection to the k-dimensional Weisfeiler–Leman algorithm imply near-optimal lower bounds on the number of refinement iterations. A key component in our proof is the hardness condensation technique recently introduced by [Razborov ’16] in the context of proof complexity. We apply this method to reduce the domain size of relational structures while maintaining the quantifier depth required to distinguish them.Categories and Subject Descriptors F.4.1 [Mathematical Logic]: Computational Logic, Model theory; F.2.3 [Tradeoffs between Complexity Measures]","PeriodicalId":206395,"journal":{"name":"2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Near-Optimal Lower Bounds on Quantifier Depth and Weisfeiler–Leman Refinement Steps\",\"authors\":\"Christoph Berkholz, Jakob Nordström\",\"doi\":\"10.1145/2933575.2934560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove near-optimal trade-offs for quantifier depth versus number of variables in first-order logic by exhibiting pairs of n-element structures that can be distinguished by a k-variable first-order sentence but where every such sentence requires quantifier depth at least nΩ(k/ log k). Our trade-offs also apply to first-order counting logic, and by the known connection to the k-dimensional Weisfeiler–Leman algorithm imply near-optimal lower bounds on the number of refinement iterations. A key component in our proof is the hardness condensation technique recently introduced by [Razborov ’16] in the context of proof complexity. We apply this method to reduce the domain size of relational structures while maintaining the quantifier depth required to distinguish them.Categories and Subject Descriptors F.4.1 [Mathematical Logic]: Computational Logic, Model theory; F.2.3 [Tradeoffs between Complexity Measures]\",\"PeriodicalId\":206395,\"journal\":{\"name\":\"2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2933575.2934560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2933575.2934560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Near-Optimal Lower Bounds on Quantifier Depth and Weisfeiler–Leman Refinement Steps
We prove near-optimal trade-offs for quantifier depth versus number of variables in first-order logic by exhibiting pairs of n-element structures that can be distinguished by a k-variable first-order sentence but where every such sentence requires quantifier depth at least nΩ(k/ log k). Our trade-offs also apply to first-order counting logic, and by the known connection to the k-dimensional Weisfeiler–Leman algorithm imply near-optimal lower bounds on the number of refinement iterations. A key component in our proof is the hardness condensation technique recently introduced by [Razborov ’16] in the context of proof complexity. We apply this method to reduce the domain size of relational structures while maintaining the quantifier depth required to distinguish them.Categories and Subject Descriptors F.4.1 [Mathematical Logic]: Computational Logic, Model theory; F.2.3 [Tradeoffs between Complexity Measures]