C. Menolfi, J. Hertle, T. Toifl, T. Morf, Daniele Gardellini, M. Braendli, P. Buchmann, M. Kossel
{"title":"32nm CMOS SOI中的28Gb/s源系列端接TX","authors":"C. Menolfi, J. Hertle, T. Toifl, T. Morf, Daniele Gardellini, M. Braendli, P. Buchmann, M. Kossel","doi":"10.1109/ISSCC.2012.6177035","DOIUrl":null,"url":null,"abstract":"Upcoming standards such as OIF CEI-25LR and CEI-28SR demand transmitter circuits above 20Gb/s [1]-[3] with stringent jitter requirements. The SST driver topology, which has been previously demonstrated at lower data rates [4], is an attractive solution as it enables multiple termination options and low power consumption. In addition, its single-ended topology facilitates an architecture in which the delay mismatch between true and complementary output can be adjusted, as is desirable for data transmission over long cables. In this contribution, the architecture and design of the key components of a half-rate 28Gb/s SST TX are presented.","PeriodicalId":255282,"journal":{"name":"2012 IEEE International Solid-State Circuits Conference","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"A 28Gb/s source-series terminated TX in 32nm CMOS SOI\",\"authors\":\"C. Menolfi, J. Hertle, T. Toifl, T. Morf, Daniele Gardellini, M. Braendli, P. Buchmann, M. Kossel\",\"doi\":\"10.1109/ISSCC.2012.6177035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Upcoming standards such as OIF CEI-25LR and CEI-28SR demand transmitter circuits above 20Gb/s [1]-[3] with stringent jitter requirements. The SST driver topology, which has been previously demonstrated at lower data rates [4], is an attractive solution as it enables multiple termination options and low power consumption. In addition, its single-ended topology facilitates an architecture in which the delay mismatch between true and complementary output can be adjusted, as is desirable for data transmission over long cables. In this contribution, the architecture and design of the key components of a half-rate 28Gb/s SST TX are presented.\",\"PeriodicalId\":255282,\"journal\":{\"name\":\"2012 IEEE International Solid-State Circuits Conference\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Solid-State Circuits Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2012.6177035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Solid-State Circuits Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2012.6177035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 28Gb/s source-series terminated TX in 32nm CMOS SOI
Upcoming standards such as OIF CEI-25LR and CEI-28SR demand transmitter circuits above 20Gb/s [1]-[3] with stringent jitter requirements. The SST driver topology, which has been previously demonstrated at lower data rates [4], is an attractive solution as it enables multiple termination options and low power consumption. In addition, its single-ended topology facilitates an architecture in which the delay mismatch between true and complementary output can be adjusted, as is desirable for data transmission over long cables. In this contribution, the architecture and design of the key components of a half-rate 28Gb/s SST TX are presented.