Cleaved Fragments Prediction Algorithm (CFPA)在calpain和caspase凋亡和坏死细胞死亡中的应用

Atlal El-Assaad, Z. Dawy, G. Nemer, F. Kobeissy
{"title":"Cleaved Fragments Prediction Algorithm (CFPA)在calpain和caspase凋亡和坏死细胞死亡中的应用","authors":"Atlal El-Assaad, Z. Dawy, G. Nemer, F. Kobeissy","doi":"10.1109/EIT.2015.7293342","DOIUrl":null,"url":null,"abstract":"The activation of cysteine proteases, calpain and caspase-3, which orchestrate the two major types of cell death, necrosis and apoptosis in various neurological and neurodegenerative disorders, drive cleavage of susceptible cellular proteins whose Breakdown Products (BDPs) can be utilized as biochemical markers; these markers can distinguish the molecular root causes among different types of neural cell death. There is an immense need to make such distinction between calpain and caspase-dependant dominated types of cell injury which is crucial in order to identify the injury mechanisms; thus, creating opportunities for neurotherapy development. Calpain protease is activated in various necrotic and apoptotic conditions generating calpain-specific cleaved fragments, while caspase-3 is predominantly activated in neuronal apoptosis generating caspase-3-specific cleaved fragments. Yet, despite the difference in cleavage specificity between calpain and caspase, some cellular proteins are dually susceptible to both proteases in some neurotoxic challenges such as hypoxia-hypoglycemia and excitotoxin treatment. During their activation, it is difficult to identify the resulting fragments despite the advanced experimental proteomics techniques in the field of degradomics. Current approaches rely on experimental techniques involving western blotting technique coupled with protein sequencing to identify the sequence specific and fragmentation site of the specific BDP(s). The main purpose of this work is to establish a new efficient and accurate methodological tool based on dynamic programming to predict those BDPs computationally with an algorithm of space complexity O(mn) and time complexity O(NN'mn), where the comprised parameters correspond to number of protein sequences, number of consensus sequences, length of each protein sequence, and length of each consensus sequence, respectively. The current algorithm is based on a modification of the Cleaved Fragments Prediction Algorithm (CFPA) and achieves high homology with experimental results.","PeriodicalId":415614,"journal":{"name":"2015 IEEE International Conference on Electro/Information Technology (EIT)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cleaved Fragments Prediction Algorithm (CFPA) application to calpain and caspase in apoptosis and necrotic cell death\",\"authors\":\"Atlal El-Assaad, Z. Dawy, G. Nemer, F. Kobeissy\",\"doi\":\"10.1109/EIT.2015.7293342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The activation of cysteine proteases, calpain and caspase-3, which orchestrate the two major types of cell death, necrosis and apoptosis in various neurological and neurodegenerative disorders, drive cleavage of susceptible cellular proteins whose Breakdown Products (BDPs) can be utilized as biochemical markers; these markers can distinguish the molecular root causes among different types of neural cell death. There is an immense need to make such distinction between calpain and caspase-dependant dominated types of cell injury which is crucial in order to identify the injury mechanisms; thus, creating opportunities for neurotherapy development. Calpain protease is activated in various necrotic and apoptotic conditions generating calpain-specific cleaved fragments, while caspase-3 is predominantly activated in neuronal apoptosis generating caspase-3-specific cleaved fragments. Yet, despite the difference in cleavage specificity between calpain and caspase, some cellular proteins are dually susceptible to both proteases in some neurotoxic challenges such as hypoxia-hypoglycemia and excitotoxin treatment. During their activation, it is difficult to identify the resulting fragments despite the advanced experimental proteomics techniques in the field of degradomics. Current approaches rely on experimental techniques involving western blotting technique coupled with protein sequencing to identify the sequence specific and fragmentation site of the specific BDP(s). The main purpose of this work is to establish a new efficient and accurate methodological tool based on dynamic programming to predict those BDPs computationally with an algorithm of space complexity O(mn) and time complexity O(NN'mn), where the comprised parameters correspond to number of protein sequences, number of consensus sequences, length of each protein sequence, and length of each consensus sequence, respectively. The current algorithm is based on a modification of the Cleaved Fragments Prediction Algorithm (CFPA) and achieves high homology with experimental results.\",\"PeriodicalId\":415614,\"journal\":{\"name\":\"2015 IEEE International Conference on Electro/Information Technology (EIT)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Electro/Information Technology (EIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EIT.2015.7293342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Electro/Information Technology (EIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIT.2015.7293342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

半胱氨酸蛋白酶calpain和caspase-3的激活,在各种神经和神经退行性疾病中协调两种主要类型的细胞死亡、坏死和凋亡,驱动敏感细胞蛋白的裂解,其分解产物(bdp)可以用作生化标志物;这些标志物可以区分不同类型神经细胞死亡的分子根源。有一个巨大的需要作出这样的区分钙蛋白酶和caspase依赖性主导类型的细胞损伤,这是至关重要的,以确定损伤机制;因此,为神经疗法的发展创造了机会。Calpain蛋白酶在各种坏死和凋亡条件下被激活,产生Calpain特异性的裂解片段,而caspase-3主要在神经元凋亡中被激活,产生caspase-3特异性的裂解片段。然而,尽管钙蛋白酶和半胱天冬酶在切割特异性上存在差异,一些细胞蛋白在一些神经毒性挑战(如缺氧-低血糖和兴奋毒素治疗)中对这两种蛋白酶具有双重敏感性。在它们的激活过程中,尽管在降解组学领域有先进的实验蛋白质组学技术,但很难鉴定产生的片段。目前的方法依赖于实验技术,包括western blotting技术与蛋白质测序相结合,以确定特定BDP的序列特异性和断裂位点。本工作的主要目的是建立一种新的基于动态规划的高效准确的方法工具,以空间复杂度O(mn)和时间复杂度O(NN'mn)的算法对这些bdp进行计算预测,其中组成的参数分别对应于蛋白质序列的数量、一致性序列的数量、每个蛋白质序列的长度和每个一致性序列的长度。该算法基于对Cleaved fragment Prediction algorithm (CFPA)的改进,与实验结果具有较高的同源性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cleaved Fragments Prediction Algorithm (CFPA) application to calpain and caspase in apoptosis and necrotic cell death
The activation of cysteine proteases, calpain and caspase-3, which orchestrate the two major types of cell death, necrosis and apoptosis in various neurological and neurodegenerative disorders, drive cleavage of susceptible cellular proteins whose Breakdown Products (BDPs) can be utilized as biochemical markers; these markers can distinguish the molecular root causes among different types of neural cell death. There is an immense need to make such distinction between calpain and caspase-dependant dominated types of cell injury which is crucial in order to identify the injury mechanisms; thus, creating opportunities for neurotherapy development. Calpain protease is activated in various necrotic and apoptotic conditions generating calpain-specific cleaved fragments, while caspase-3 is predominantly activated in neuronal apoptosis generating caspase-3-specific cleaved fragments. Yet, despite the difference in cleavage specificity between calpain and caspase, some cellular proteins are dually susceptible to both proteases in some neurotoxic challenges such as hypoxia-hypoglycemia and excitotoxin treatment. During their activation, it is difficult to identify the resulting fragments despite the advanced experimental proteomics techniques in the field of degradomics. Current approaches rely on experimental techniques involving western blotting technique coupled with protein sequencing to identify the sequence specific and fragmentation site of the specific BDP(s). The main purpose of this work is to establish a new efficient and accurate methodological tool based on dynamic programming to predict those BDPs computationally with an algorithm of space complexity O(mn) and time complexity O(NN'mn), where the comprised parameters correspond to number of protein sequences, number of consensus sequences, length of each protein sequence, and length of each consensus sequence, respectively. The current algorithm is based on a modification of the Cleaved Fragments Prediction Algorithm (CFPA) and achieves high homology with experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Space time block code for four time slots and two transmit antennas Social routing: A novel routing protocol for delay tolerant network based on dynamic connectivity Radiation performance and Specific Absorption Rate (SAR) analysis of a compact dual band balanced antenna Design of half bridge LLC resonant converter using synchronous rectifier Frame distance array algorithm parameter tune-up for TIMIT corpus automatic speech segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1