改进的K奇异点聚类算法

Terence Johnson, S. Singh
{"title":"改进的K奇异点聚类算法","authors":"Terence Johnson, S. Singh","doi":"10.1109/EITES.2015.14","DOIUrl":null,"url":null,"abstract":"The algorithm proposed in this paper enhances the K Strange points clustering algorithm by selecting the first of unchanging K strange points as the minimum of the dataset and then finds the next strange point as the point which is farthest from the minimum and continues this process till it finds the K points which are farthest and almost equally spaced from each other. It then assigns the remaining points in the dataset into clusters formed by these K farthest or Strange points. The algorithm presented in this paper successfully addresses the issues related to longer execution time and formation of inaccurate clusters seen in the K Strange points clustering algorithm.","PeriodicalId":170773,"journal":{"name":"2015 International Conference on Emerging Information Technology and Engineering Solutions","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Enhanced K Strange Points Clustering Algorithm\",\"authors\":\"Terence Johnson, S. Singh\",\"doi\":\"10.1109/EITES.2015.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The algorithm proposed in this paper enhances the K Strange points clustering algorithm by selecting the first of unchanging K strange points as the minimum of the dataset and then finds the next strange point as the point which is farthest from the minimum and continues this process till it finds the K points which are farthest and almost equally spaced from each other. It then assigns the remaining points in the dataset into clusters formed by these K farthest or Strange points. The algorithm presented in this paper successfully addresses the issues related to longer execution time and formation of inaccurate clusters seen in the K Strange points clustering algorithm.\",\"PeriodicalId\":170773,\"journal\":{\"name\":\"2015 International Conference on Emerging Information Technology and Engineering Solutions\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Emerging Information Technology and Engineering Solutions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EITES.2015.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Emerging Information Technology and Engineering Solutions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EITES.2015.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文提出的算法对K个奇异点聚类算法进行了改进,选取不变的K个奇异点中的第一个作为数据集的最小值,然后寻找下一个奇异点作为距离最小值最远的点,并继续这一过程,直到找到距离最远且几乎相等的K个点。然后,它将数据集中剩余的点分配到由这K个最远点或奇异点组成的簇中。本文提出的算法成功地解决了K奇异点聚类算法中出现的执行时间较长和形成不准确聚类的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced K Strange Points Clustering Algorithm
The algorithm proposed in this paper enhances the K Strange points clustering algorithm by selecting the first of unchanging K strange points as the minimum of the dataset and then finds the next strange point as the point which is farthest from the minimum and continues this process till it finds the K points which are farthest and almost equally spaced from each other. It then assigns the remaining points in the dataset into clusters formed by these K farthest or Strange points. The algorithm presented in this paper successfully addresses the issues related to longer execution time and formation of inaccurate clusters seen in the K Strange points clustering algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bounded-SVD: A Matrix Factorization Method with Bound Constraints for Recommender Systems Enhanced K Strange Points Clustering Algorithm Experiments in Encrypted and Searchable Network Audit Logs Non-exclusive Clustering: A Partitioning Approach Optimized Technique for Capacitated Minimum Forest Problem In Wireless Sensor Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1