Guanhui. Liu, Wei-Chen Tai, Yi-Ting Lin, I. Jiang, J. Shiely, Pu-Jen Cheng
{"title":"子分辨率辅助特征生成与强化学习和迁移学习","authors":"Guanhui. Liu, Wei-Chen Tai, Yi-Ting Lin, I. Jiang, J. Shiely, Pu-Jen Cheng","doi":"10.1145/3508352.3549388","DOIUrl":null,"url":null,"abstract":"As modern photolithography feature sizes continue to shrink, sub-resolution assist feature (SRAF) generation has become a key resolution enhancement technique to improve the manufacturing process window. State-of-the-art works resort to machine learning to overcome the deficiencies of model-based and rule-based approaches. Nevertheless, these machine learning-based methods do not consider or implicitly consider the optical interference between SRAFs, and highly rely on post-processing to satisfy SRAF mask manufacturing rules. In this paper, we are the first to generate SRAFs using reinforcement learning to address SRAF interference and produce mask-rule-compliant results directly. In this way, our two-phase learning enables us to emulate the style of model-based SRAFs while further improving the process variation (PV) band. A state alignment and action transformation mechanism is proposed to achieve orientation equivariance while expediting the training process. We also propose a transfer learning framework, allowing SRAF generation under different light sources without retraining the model. Compared with state-of-the-art works, our method improves the solution quality in terms of PV band and edge placement error (EPE) while reducing the overall runtime.","PeriodicalId":270592,"journal":{"name":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"34 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sub-Resolution Assist Feature Generation with Reinforcement Learning and Transfer Learning\",\"authors\":\"Guanhui. Liu, Wei-Chen Tai, Yi-Ting Lin, I. Jiang, J. Shiely, Pu-Jen Cheng\",\"doi\":\"10.1145/3508352.3549388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As modern photolithography feature sizes continue to shrink, sub-resolution assist feature (SRAF) generation has become a key resolution enhancement technique to improve the manufacturing process window. State-of-the-art works resort to machine learning to overcome the deficiencies of model-based and rule-based approaches. Nevertheless, these machine learning-based methods do not consider or implicitly consider the optical interference between SRAFs, and highly rely on post-processing to satisfy SRAF mask manufacturing rules. In this paper, we are the first to generate SRAFs using reinforcement learning to address SRAF interference and produce mask-rule-compliant results directly. In this way, our two-phase learning enables us to emulate the style of model-based SRAFs while further improving the process variation (PV) band. A state alignment and action transformation mechanism is proposed to achieve orientation equivariance while expediting the training process. We also propose a transfer learning framework, allowing SRAF generation under different light sources without retraining the model. Compared with state-of-the-art works, our method improves the solution quality in terms of PV band and edge placement error (EPE) while reducing the overall runtime.\",\"PeriodicalId\":270592,\"journal\":{\"name\":\"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"volume\":\"34 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3508352.3549388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508352.3549388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sub-Resolution Assist Feature Generation with Reinforcement Learning and Transfer Learning
As modern photolithography feature sizes continue to shrink, sub-resolution assist feature (SRAF) generation has become a key resolution enhancement technique to improve the manufacturing process window. State-of-the-art works resort to machine learning to overcome the deficiencies of model-based and rule-based approaches. Nevertheless, these machine learning-based methods do not consider or implicitly consider the optical interference between SRAFs, and highly rely on post-processing to satisfy SRAF mask manufacturing rules. In this paper, we are the first to generate SRAFs using reinforcement learning to address SRAF interference and produce mask-rule-compliant results directly. In this way, our two-phase learning enables us to emulate the style of model-based SRAFs while further improving the process variation (PV) band. A state alignment and action transformation mechanism is proposed to achieve orientation equivariance while expediting the training process. We also propose a transfer learning framework, allowing SRAF generation under different light sources without retraining the model. Compared with state-of-the-art works, our method improves the solution quality in terms of PV band and edge placement error (EPE) while reducing the overall runtime.