nCRF动态调节的神经回路模型及其在图像表示中的应用

Hui Wei, Xiaomei Wang
{"title":"nCRF动态调节的神经回路模型及其在图像表示中的应用","authors":"Hui Wei, Xiaomei Wang","doi":"10.1109/IJCNN.2011.6033252","DOIUrl":null,"url":null,"abstract":"According to Biology there is a large disinhibitory area outside the classical receptive field (CRF), which is called as non-classical receptive field (nCRF). Combining CRF with nCRF could increase the sparseness, reliability and precision of the neuronal responses. This paper is aimed at the realization of the neural circuit and the dynamic adjustment mechanism of the receptive field (RF) with respect to nCRF. On the basis of anatomical and electrophysiological evidence, we constructed a neural computational model, which can represent natural images faithfully, simply and rapidly. And the representation can significantly improve the subsequent operation efficiency such as segmentation or integration. This study is of particular significance in the development of efficient image processing algorithms based on neurobiological mechanisms. The RF mechanism of ganglion cell (GC) is the result of a long term of evolution and optimization of self-adaptability and high representation efficiency. So its performance evaluation in natural image processing is worthy of further study.","PeriodicalId":415833,"journal":{"name":"The 2011 International Joint Conference on Neural Networks","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A neural circuit model for nCRF's dynamic adjustment and its application on image representation\",\"authors\":\"Hui Wei, Xiaomei Wang\",\"doi\":\"10.1109/IJCNN.2011.6033252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"According to Biology there is a large disinhibitory area outside the classical receptive field (CRF), which is called as non-classical receptive field (nCRF). Combining CRF with nCRF could increase the sparseness, reliability and precision of the neuronal responses. This paper is aimed at the realization of the neural circuit and the dynamic adjustment mechanism of the receptive field (RF) with respect to nCRF. On the basis of anatomical and electrophysiological evidence, we constructed a neural computational model, which can represent natural images faithfully, simply and rapidly. And the representation can significantly improve the subsequent operation efficiency such as segmentation or integration. This study is of particular significance in the development of efficient image processing algorithms based on neurobiological mechanisms. The RF mechanism of ganglion cell (GC) is the result of a long term of evolution and optimization of self-adaptability and high representation efficiency. So its performance evaluation in natural image processing is worthy of further study.\",\"PeriodicalId\":415833,\"journal\":{\"name\":\"The 2011 International Joint Conference on Neural Networks\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2011 International Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2011.6033252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2011 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2011.6033252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在经典感受野(classic receptive field, CRF)之外存在着一个较大的去抑制性区域,称为非经典感受野(non-classic receptive field, nCRF)。将CRF与nCRF相结合可以提高神经元响应的稀疏性、可靠性和精度。本文旨在研究神经回路的实现和感受野(RF)的动态调节机制。在解剖和电生理证据的基础上,我们构建了一个能够真实、简单、快速地表示自然图像的神经计算模型。并且该表示可以显著提高后续分割或集成等操作效率。本研究对于开发基于神经生物学机制的高效图像处理算法具有重要意义。神经节细胞的射频机制是长期进化和优化的自适应性和高表征效率的结果。因此,其在自然图像处理中的性能评价值得进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A neural circuit model for nCRF's dynamic adjustment and its application on image representation
According to Biology there is a large disinhibitory area outside the classical receptive field (CRF), which is called as non-classical receptive field (nCRF). Combining CRF with nCRF could increase the sparseness, reliability and precision of the neuronal responses. This paper is aimed at the realization of the neural circuit and the dynamic adjustment mechanism of the receptive field (RF) with respect to nCRF. On the basis of anatomical and electrophysiological evidence, we constructed a neural computational model, which can represent natural images faithfully, simply and rapidly. And the representation can significantly improve the subsequent operation efficiency such as segmentation or integration. This study is of particular significance in the development of efficient image processing algorithms based on neurobiological mechanisms. The RF mechanism of ganglion cell (GC) is the result of a long term of evolution and optimization of self-adaptability and high representation efficiency. So its performance evaluation in natural image processing is worthy of further study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chaos of protein folding EEG-based brain dynamics of driving distraction Residential energy system control and management using adaptive dynamic programming How the core theory of CLARION captures human decision-making Wiener systems for reconstruction of missing seismic traces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1