基于特征向量选择的光谱聚类图像分割

Aditya Prakash, S. Balasubramanian, R. R. Sarma
{"title":"基于特征向量选择的光谱聚类图像分割","authors":"Aditya Prakash, S. Balasubramanian, R. R. Sarma","doi":"10.1109/NCVPRIPG.2013.6776233","DOIUrl":null,"url":null,"abstract":"General spectral Clustering(SC) algorithms employ top eigenvectors of normalized Laplacian for spectral rounding. However, recent research has pointed out that in case of noisy and sparse data, all top eigenvectors may not be informative or relevant for the purpose of clustering. Use of these eigenvectors for spectral rounding may lead to bad clustering results. Self-tuning SC method proposed by Zelnik and Perona [1] places a very stringent condition of best alignment possible with canonical coordinate system for selection of relevant eigenvectors. We analyse their algorithm and relax the best alignment criterion to an average alignment criterion. We demonstrate the effectiveness of our improvisation on synthetic as well as natural images by comparing the results using Berkeley segmentation and benchmarking dataset.","PeriodicalId":436402,"journal":{"name":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improvised eigenvector selection for spectral Clustering in image segmentation\",\"authors\":\"Aditya Prakash, S. Balasubramanian, R. R. Sarma\",\"doi\":\"10.1109/NCVPRIPG.2013.6776233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"General spectral Clustering(SC) algorithms employ top eigenvectors of normalized Laplacian for spectral rounding. However, recent research has pointed out that in case of noisy and sparse data, all top eigenvectors may not be informative or relevant for the purpose of clustering. Use of these eigenvectors for spectral rounding may lead to bad clustering results. Self-tuning SC method proposed by Zelnik and Perona [1] places a very stringent condition of best alignment possible with canonical coordinate system for selection of relevant eigenvectors. We analyse their algorithm and relax the best alignment criterion to an average alignment criterion. We demonstrate the effectiveness of our improvisation on synthetic as well as natural images by comparing the results using Berkeley segmentation and benchmarking dataset.\",\"PeriodicalId\":436402,\"journal\":{\"name\":\"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCVPRIPG.2013.6776233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCVPRIPG.2013.6776233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

一般谱聚类算法采用归一化拉普拉斯的顶特征向量进行谱舍入。然而,最近的研究指出,在有噪声和稀疏数据的情况下,所有的顶部特征向量可能不具有信息性或相关性,无法用于聚类。使用这些特征向量进行光谱舍入可能导致不好的聚类结果。Zelnik和Perona[1]提出的自调谐SC方法对相关特征向量的选择提出了非常严格的与规范坐标系可能的最佳对准条件。分析了它们的算法,将最佳对齐准则简化为平均对齐准则。通过比较使用伯克利分割和基准数据集的结果,我们证明了我们在合成图像和自然图像上的即兴创作的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improvised eigenvector selection for spectral Clustering in image segmentation
General spectral Clustering(SC) algorithms employ top eigenvectors of normalized Laplacian for spectral rounding. However, recent research has pointed out that in case of noisy and sparse data, all top eigenvectors may not be informative or relevant for the purpose of clustering. Use of these eigenvectors for spectral rounding may lead to bad clustering results. Self-tuning SC method proposed by Zelnik and Perona [1] places a very stringent condition of best alignment possible with canonical coordinate system for selection of relevant eigenvectors. We analyse their algorithm and relax the best alignment criterion to an average alignment criterion. We demonstrate the effectiveness of our improvisation on synthetic as well as natural images by comparing the results using Berkeley segmentation and benchmarking dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image deblurring in super-resolution framework Surface fitting in SPECT imaging useful for detecting Parkinson's Disease and Scans Without Evidence of Dopaminergic Deficit Automatic number plate recognition system using modified stroke width transform UKF based multi-component phase estimation in digital holographic Moiré Feature preserving anisotropic diffusion for image restoration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1