基于kpca的GLRT技术的化工过程故障检测

R. Baklouti, M. Mansouri, H. Nounou, M. Nounou, M. Slima, A. Hamida
{"title":"基于kpca的GLRT技术的化工过程故障检测","authors":"R. Baklouti, M. Mansouri, H. Nounou, M. Nounou, M. Slima, A. Hamida","doi":"10.1109/ATSIP.2017.8075513","DOIUrl":null,"url":null,"abstract":"In this paper, we address the problem of nonlinear fault detection of chemical processes. The objective is to extend our previous work [1] to provide a better performance in terms of fault detection accuracies by developing a pre-image kernel PCA (KPCA)-based Generalized Likelihood Ratio Test (GLRT) technique. The benefit of the pre-image kPCA technique lies in its ability to compute the residual in the original space using the KPCA from the feature space. In addition, GLRT provides more accurate results in terms of fault detection. The performance of the developed pre-image KPCA-based GLRT fault detection technique is evaluated using simulated continuously stirred tank reactor (CSTR) model.","PeriodicalId":259951,"journal":{"name":"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fault detection of chemical processes using KPCA-based GLRT technique\",\"authors\":\"R. Baklouti, M. Mansouri, H. Nounou, M. Nounou, M. Slima, A. Hamida\",\"doi\":\"10.1109/ATSIP.2017.8075513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we address the problem of nonlinear fault detection of chemical processes. The objective is to extend our previous work [1] to provide a better performance in terms of fault detection accuracies by developing a pre-image kernel PCA (KPCA)-based Generalized Likelihood Ratio Test (GLRT) technique. The benefit of the pre-image kPCA technique lies in its ability to compute the residual in the original space using the KPCA from the feature space. In addition, GLRT provides more accurate results in terms of fault detection. The performance of the developed pre-image KPCA-based GLRT fault detection technique is evaluated using simulated continuously stirred tank reactor (CSTR) model.\",\"PeriodicalId\":259951,\"journal\":{\"name\":\"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATSIP.2017.8075513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATSIP.2017.8075513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了化工过程的非线性故障检测问题。我们的目标是扩展我们之前的工作[1],通过开发基于预图像核PCA (KPCA)的广义似然比测试(GLRT)技术,在故障检测精度方面提供更好的性能。预图像kPCA技术的优点在于它能够利用特征空间中的kPCA计算原始空间中的残差。此外,GLRT在故障检测方面提供了更准确的结果。利用模拟连续搅拌槽式反应器(CSTR)模型,对基于预图像kpca的GLRT故障检测技术的性能进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fault detection of chemical processes using KPCA-based GLRT technique
In this paper, we address the problem of nonlinear fault detection of chemical processes. The objective is to extend our previous work [1] to provide a better performance in terms of fault detection accuracies by developing a pre-image kernel PCA (KPCA)-based Generalized Likelihood Ratio Test (GLRT) technique. The benefit of the pre-image kPCA technique lies in its ability to compute the residual in the original space using the KPCA from the feature space. In addition, GLRT provides more accurate results in terms of fault detection. The performance of the developed pre-image KPCA-based GLRT fault detection technique is evaluated using simulated continuously stirred tank reactor (CSTR) model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Speckle noise reduction in digital speckle pattern interferometry using Riesz wavelets transform A new GLBSIF descriptor for face recognition in the uncontrolled environments Saliency attention and sift keypoints combination for automatic target recognition on MSTAR dataset A comparative study of interworking methods among differents rats in 5G context Diagnosis of osteoporosis disease from bone X-ray images with stacked sparse autoencoder and SVM classifier
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1