下一代光城域网络的以太网突发传输

A. Germoni, P. Testa, R. Sabella, M. Listanti
{"title":"下一代光城域网络的以太网突发传输","authors":"A. Germoni, P. Testa, R. Sabella, M. Listanti","doi":"10.1109/infcomw.2011.5928798","DOIUrl":null,"url":null,"abstract":"The main requirement for the Next Generation Transport Network infrastructure is a flexible and efficient support of different services, demanding for several levels of Quality of Service (QoS) and resilience. In order to have an effective utilization of network resources, and the ability to react to traffic demand changes with time, such multi-service next generation transport networks, should be, to some extend, self-adapting. This requirement are pushing the migration from the traditional legacy circuit based transport networks towards integrated packet optical solutions. The need to introduce packet flexibility into the optics world relying on huge and reliable static pipes, without impacting the scalability of the nodes has lead to multilayer solutions such as current MSPP and POTP platforms based on multiple switching layers (i.e. packet, OTN and optical). This however requires complex control plane functionalities that limit their effectiveness and flexibility. This paper presents a new approach for next generation optical packet transport, based on a pure Layer 2 switching, that is Ethernet compliant since it does not require changes in Ethernet frame format and main Ethernet switch functionalities. It relies on a burst transmission structure that allows to reduce packet processing without introducing underlaid switching layers and consequently to scale switch forwarding functionalities. It could be regarded as a concrete step towards the realization of self-adapting networks. Some relevant simulation results are reported to discuss the main characteristics of such a new transport solution and assess the feasibility of the concept.","PeriodicalId":402219,"journal":{"name":"2011 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ethernet burst transport for next generation optical metro networks\",\"authors\":\"A. Germoni, P. Testa, R. Sabella, M. Listanti\",\"doi\":\"10.1109/infcomw.2011.5928798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main requirement for the Next Generation Transport Network infrastructure is a flexible and efficient support of different services, demanding for several levels of Quality of Service (QoS) and resilience. In order to have an effective utilization of network resources, and the ability to react to traffic demand changes with time, such multi-service next generation transport networks, should be, to some extend, self-adapting. This requirement are pushing the migration from the traditional legacy circuit based transport networks towards integrated packet optical solutions. The need to introduce packet flexibility into the optics world relying on huge and reliable static pipes, without impacting the scalability of the nodes has lead to multilayer solutions such as current MSPP and POTP platforms based on multiple switching layers (i.e. packet, OTN and optical). This however requires complex control plane functionalities that limit their effectiveness and flexibility. This paper presents a new approach for next generation optical packet transport, based on a pure Layer 2 switching, that is Ethernet compliant since it does not require changes in Ethernet frame format and main Ethernet switch functionalities. It relies on a burst transmission structure that allows to reduce packet processing without introducing underlaid switching layers and consequently to scale switch forwarding functionalities. It could be regarded as a concrete step towards the realization of self-adapting networks. Some relevant simulation results are reported to discuss the main characteristics of such a new transport solution and assess the feasibility of the concept.\",\"PeriodicalId\":402219,\"journal\":{\"name\":\"2011 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/infcomw.2011.5928798\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/infcomw.2011.5928798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

下一代传输网络基础设施的主要需求是灵活有效地支持不同的业务,需要多个级别的服务质量(QoS)和弹性。为了有效地利用网络资源,并对随时间变化的流量需求作出反应,这种多业务下一代传输网络应该在一定程度上具有自适应能力。这种需求正在推动从传统的基于电路的传输网络向集成分组光解决方案的迁移。由于需要在不影响节点可扩展性的情况下,依靠庞大而可靠的静态管道将数据包灵活性引入光学世界,因此导致了多层解决方案,例如当前基于多个交换层(即分组、OTN和光学)的MSPP和POTP平台。然而,这需要复杂的控制平面功能,限制了它们的有效性和灵活性。本文提出了一种基于纯第2层交换的下一代光分组传输新方法,该方法与以太网兼容,因为它不需要改变以太网帧格式和主要以太网交换机功能。它依赖于突发传输结构,该结构允许在不引入底层交换层的情况下减少数据包处理,从而扩展交换机转发功能。这可以看作是实现自适应网络的一个具体步骤。本文报道了一些相关的仿真结果,讨论了这种新型运输方案的主要特点,并评估了该概念的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ethernet burst transport for next generation optical metro networks
The main requirement for the Next Generation Transport Network infrastructure is a flexible and efficient support of different services, demanding for several levels of Quality of Service (QoS) and resilience. In order to have an effective utilization of network resources, and the ability to react to traffic demand changes with time, such multi-service next generation transport networks, should be, to some extend, self-adapting. This requirement are pushing the migration from the traditional legacy circuit based transport networks towards integrated packet optical solutions. The need to introduce packet flexibility into the optics world relying on huge and reliable static pipes, without impacting the scalability of the nodes has lead to multilayer solutions such as current MSPP and POTP platforms based on multiple switching layers (i.e. packet, OTN and optical). This however requires complex control plane functionalities that limit their effectiveness and flexibility. This paper presents a new approach for next generation optical packet transport, based on a pure Layer 2 switching, that is Ethernet compliant since it does not require changes in Ethernet frame format and main Ethernet switch functionalities. It relies on a burst transmission structure that allows to reduce packet processing without introducing underlaid switching layers and consequently to scale switch forwarding functionalities. It could be regarded as a concrete step towards the realization of self-adapting networks. Some relevant simulation results are reported to discuss the main characteristics of such a new transport solution and assess the feasibility of the concept.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A robust controller of dynamic networks and its verification by the simulation of the heat shock response network with reliable signal transmission An energy-aware distributed approach for content and network management Lightweight privacy-preserving routing and incentive protocol for hybrid ad hoc wireless network Cooperative spectrum sensing in TV White Spaces: When Cognitive Radio meets Cloud A Reservation-based Smart Parking System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1