{"title":"OSPEN:一个用于模拟神经形态硬件的开源平台","authors":"A. Ghani, T. Dowrick, L. McDaid","doi":"10.11591/ijres.v12.i1.pp1-8","DOIUrl":null,"url":null,"abstract":"This paper demonstrates a framework that entails a bottom-up approach to accelerate research, development, and verification of neuro-inspired sensing devices for real-life applications. Previous work in neuromorphic engineering mostly considered application-specific designs which is a strong limitation for researchers to develop novel applications and emulate the true behaviour of neuro-inspired systems. Hence to enable the fully parallel brain-like computations, this paper proposes a methodology where a spiking neuron model was emulated in software and electronic circuits were then implemented and characterized. The proposed approach offers a unique perspective whereby experimental measurements taken from a fabricated device allowing empirical models to be developed. This technique acts as a bridge between the theoretical and practical aspects of neuro-inspired devices. It is shown through software simulations and empirical modelling that the proposed technique is capable of replicating neural dynamics and post-synaptic potentials. Retrospectively, the proposed framework offers a first step towards open-source neuro-inspired hardware for a range of applications such as healthcare, applied machine learning and the internet of things (IoT).","PeriodicalId":158991,"journal":{"name":"International Journal of Reconfigurable and Embedded Systems (IJRES)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OSPEN: an open source platform for emulating neuromorphic hardware\",\"authors\":\"A. Ghani, T. Dowrick, L. McDaid\",\"doi\":\"10.11591/ijres.v12.i1.pp1-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper demonstrates a framework that entails a bottom-up approach to accelerate research, development, and verification of neuro-inspired sensing devices for real-life applications. Previous work in neuromorphic engineering mostly considered application-specific designs which is a strong limitation for researchers to develop novel applications and emulate the true behaviour of neuro-inspired systems. Hence to enable the fully parallel brain-like computations, this paper proposes a methodology where a spiking neuron model was emulated in software and electronic circuits were then implemented and characterized. The proposed approach offers a unique perspective whereby experimental measurements taken from a fabricated device allowing empirical models to be developed. This technique acts as a bridge between the theoretical and practical aspects of neuro-inspired devices. It is shown through software simulations and empirical modelling that the proposed technique is capable of replicating neural dynamics and post-synaptic potentials. Retrospectively, the proposed framework offers a first step towards open-source neuro-inspired hardware for a range of applications such as healthcare, applied machine learning and the internet of things (IoT).\",\"PeriodicalId\":158991,\"journal\":{\"name\":\"International Journal of Reconfigurable and Embedded Systems (IJRES)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Reconfigurable and Embedded Systems (IJRES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijres.v12.i1.pp1-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Reconfigurable and Embedded Systems (IJRES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijres.v12.i1.pp1-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
OSPEN: an open source platform for emulating neuromorphic hardware
This paper demonstrates a framework that entails a bottom-up approach to accelerate research, development, and verification of neuro-inspired sensing devices for real-life applications. Previous work in neuromorphic engineering mostly considered application-specific designs which is a strong limitation for researchers to develop novel applications and emulate the true behaviour of neuro-inspired systems. Hence to enable the fully parallel brain-like computations, this paper proposes a methodology where a spiking neuron model was emulated in software and electronic circuits were then implemented and characterized. The proposed approach offers a unique perspective whereby experimental measurements taken from a fabricated device allowing empirical models to be developed. This technique acts as a bridge between the theoretical and practical aspects of neuro-inspired devices. It is shown through software simulations and empirical modelling that the proposed technique is capable of replicating neural dynamics and post-synaptic potentials. Retrospectively, the proposed framework offers a first step towards open-source neuro-inspired hardware for a range of applications such as healthcare, applied machine learning and the internet of things (IoT).