基于子采样的邻域保持嵌入图像分类

Li-Yan Zhao, Dong Zou, Guanghong Gao
{"title":"基于子采样的邻域保持嵌入图像分类","authors":"Li-Yan Zhao, Dong Zou, Guanghong Gao","doi":"10.1109/IIH-MSP.2013.96","DOIUrl":null,"url":null,"abstract":"In this paper, a novel image feature extraction algorithm, called Subsampling based neighborhood preserving embedding (SNPE), is proposed. SNPE aims to preserve the neighborhood of the subsampling image samples. The proposed algorithm is applied to image classification on Finger-Knuckle-Print database. The experimental results confirm the effectiveness of the proposed algorithm.","PeriodicalId":105427,"journal":{"name":"2013 Ninth International Conference on Intelligent Information Hiding and Multimedia Signal Processing","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Subsampling Based Neighborhood Preserving Embedding for Image Classification\",\"authors\":\"Li-Yan Zhao, Dong Zou, Guanghong Gao\",\"doi\":\"10.1109/IIH-MSP.2013.96\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel image feature extraction algorithm, called Subsampling based neighborhood preserving embedding (SNPE), is proposed. SNPE aims to preserve the neighborhood of the subsampling image samples. The proposed algorithm is applied to image classification on Finger-Knuckle-Print database. The experimental results confirm the effectiveness of the proposed algorithm.\",\"PeriodicalId\":105427,\"journal\":{\"name\":\"2013 Ninth International Conference on Intelligent Information Hiding and Multimedia Signal Processing\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Ninth International Conference on Intelligent Information Hiding and Multimedia Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IIH-MSP.2013.96\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Ninth International Conference on Intelligent Information Hiding and Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIH-MSP.2013.96","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种新的图像特征提取算法——基于子采样的邻域保持嵌入算法(SNPE)。SNPE的目的是保持子采样图像样本的邻域。将该算法应用于指关节指纹数据库的图像分类。实验结果验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Subsampling Based Neighborhood Preserving Embedding for Image Classification
In this paper, a novel image feature extraction algorithm, called Subsampling based neighborhood preserving embedding (SNPE), is proposed. SNPE aims to preserve the neighborhood of the subsampling image samples. The proposed algorithm is applied to image classification on Finger-Knuckle-Print database. The experimental results confirm the effectiveness of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulation of Theme Park Queuing System by Using Arena A Method for Affine Invariant Image Smoothing Encryption in High Dynamic Range Images for RGBE Format Hybrid Reverberator Using Multiple Impulse Responses for Audio Rendering Improvement Recaptured Image Detection Based on Texture Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1