可视化查询系统发生

H. Jamil, Giovanni A. Modica, Maria A. Teran
{"title":"可视化查询系统发生","authors":"H. Jamil, Giovanni A. Modica, Maria A. Teran","doi":"10.1109/BIBE.2001.974405","DOIUrl":null,"url":null,"abstract":"Querying and visualization of phylogenetic databases remain a great challenge due to their inherent complex structures. Popular phylogenetic databases such as Tree of Life and TreeBASE do not support flexible querying through query languages for the exploration of their contents. The query facility employed in these databases is usually limited to complex interfaces or is too limited to be useful for many applications. The most striking shortcoming of these systems is that they do not treat phylogenies (trees) as first citizens. In this paper, we introduce a novel visual query language for phylogenetic databases in which trees are recognized as basic units. We also introduce a Web based query interface, based on this language, for querying any tree like structure, either on the Web (e.g. Tree of Life), or in traditional relational databases (e.g. TreeBASE). As an aside, the mapping technique used in our system makes it possible to interoperate between a variety of heterogeneous phylogenetic databases. Finally, we demonstrate that the basic tree manipulation operators proposed in this paper can be used to form unlimited types of tree queries that were not possible in popular phylogenetic databases until now.","PeriodicalId":405124,"journal":{"name":"Proceedings 2nd Annual IEEE International Symposium on Bioinformatics and Bioengineering (BIBE 2001)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Querying phylogenies visually\",\"authors\":\"H. Jamil, Giovanni A. Modica, Maria A. Teran\",\"doi\":\"10.1109/BIBE.2001.974405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Querying and visualization of phylogenetic databases remain a great challenge due to their inherent complex structures. Popular phylogenetic databases such as Tree of Life and TreeBASE do not support flexible querying through query languages for the exploration of their contents. The query facility employed in these databases is usually limited to complex interfaces or is too limited to be useful for many applications. The most striking shortcoming of these systems is that they do not treat phylogenies (trees) as first citizens. In this paper, we introduce a novel visual query language for phylogenetic databases in which trees are recognized as basic units. We also introduce a Web based query interface, based on this language, for querying any tree like structure, either on the Web (e.g. Tree of Life), or in traditional relational databases (e.g. TreeBASE). As an aside, the mapping technique used in our system makes it possible to interoperate between a variety of heterogeneous phylogenetic databases. Finally, we demonstrate that the basic tree manipulation operators proposed in this paper can be used to form unlimited types of tree queries that were not possible in popular phylogenetic databases until now.\",\"PeriodicalId\":405124,\"journal\":{\"name\":\"Proceedings 2nd Annual IEEE International Symposium on Bioinformatics and Bioengineering (BIBE 2001)\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2nd Annual IEEE International Symposium on Bioinformatics and Bioengineering (BIBE 2001)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE.2001.974405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2nd Annual IEEE International Symposium on Bioinformatics and Bioengineering (BIBE 2001)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2001.974405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

系统发育数据库由于其固有的复杂结构,查询和可视化仍然是一个巨大的挑战。流行的系统发育数据库,如Tree of Life和TreeBASE,不支持通过查询语言对其内容进行灵活的查询。这些数据库中使用的查询功能通常仅限于复杂的接口,或者对许多应用程序都不太有用。这些系统最显著的缺点是它们没有把系统发育(树)当作第一公民来对待。本文介绍了一种以树为基本单位的系统发育数据库可视化查询语言。我们还介绍了基于这种语言的基于Web的查询接口,用于在Web(例如tree of Life)或传统关系数据库(例如TreeBASE)中查询任何树状结构。顺便说一句,在我们的系统中使用的映射技术使得在各种异构的系统发育数据库之间进行互操作成为可能。最后,我们证明了本文提出的基本树操作算子可以用来形成无限类型的树查询,这在目前流行的系统发育数据库中是不可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Querying phylogenies visually
Querying and visualization of phylogenetic databases remain a great challenge due to their inherent complex structures. Popular phylogenetic databases such as Tree of Life and TreeBASE do not support flexible querying through query languages for the exploration of their contents. The query facility employed in these databases is usually limited to complex interfaces or is too limited to be useful for many applications. The most striking shortcoming of these systems is that they do not treat phylogenies (trees) as first citizens. In this paper, we introduce a novel visual query language for phylogenetic databases in which trees are recognized as basic units. We also introduce a Web based query interface, based on this language, for querying any tree like structure, either on the Web (e.g. Tree of Life), or in traditional relational databases (e.g. TreeBASE). As an aside, the mapping technique used in our system makes it possible to interoperate between a variety of heterogeneous phylogenetic databases. Finally, we demonstrate that the basic tree manipulation operators proposed in this paper can be used to form unlimited types of tree queries that were not possible in popular phylogenetic databases until now.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparing algorithms for large-scale sequence analysis Mining genome variation to associate disease with transcription factor binding site alteration Searching online journals for fluorescence microscope images depicting protein subcellular location patterns Profile combinatorics for fragment selection in comparative protein structure modeling Development of a robotic device for MRI-guided interventions in the breast
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1