平均资源约束下多源两跳系统AoI的最小化

Abolfazl Zakeri, Mohammad Moltafet, Markus Leinonen, M. Codreanu
{"title":"平均资源约束下多源两跳系统AoI的最小化","authors":"Abolfazl Zakeri, Mohammad Moltafet, Markus Leinonen, M. Codreanu","doi":"10.1109/spawc51304.2022.9834029","DOIUrl":null,"url":null,"abstract":"We develop online scheduling policies to minimize the sum average age of information (AoI) subject to transmission capacity and long-run average resource constraints in a multisource two-hop system, where independent sources randomly generate status update packets which are sent to the destination via a relay through error-prone links. A stochastic optimization problem is formulated and solved in known and unknown environments. For the known environment, an online nearoptimal low-complexity policy is developed using the driftplus-penalty method. For the unknown environment, a deep reinforcement learning policy is developed by employing the Lyapunov optimization theory and a dueling double deep Qnetwork. Simulation results show up to 136% performance improvement of the proposed policy compared to a greedy-based baseline policy.","PeriodicalId":423807,"journal":{"name":"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Minimizing the AoI in Multi-Source Two-Hop Systems under an Average Resource Constraint\",\"authors\":\"Abolfazl Zakeri, Mohammad Moltafet, Markus Leinonen, M. Codreanu\",\"doi\":\"10.1109/spawc51304.2022.9834029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop online scheduling policies to minimize the sum average age of information (AoI) subject to transmission capacity and long-run average resource constraints in a multisource two-hop system, where independent sources randomly generate status update packets which are sent to the destination via a relay through error-prone links. A stochastic optimization problem is formulated and solved in known and unknown environments. For the known environment, an online nearoptimal low-complexity policy is developed using the driftplus-penalty method. For the unknown environment, a deep reinforcement learning policy is developed by employing the Lyapunov optimization theory and a dueling double deep Qnetwork. Simulation results show up to 136% performance improvement of the proposed policy compared to a greedy-based baseline policy.\",\"PeriodicalId\":423807,\"journal\":{\"name\":\"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/spawc51304.2022.9834029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/spawc51304.2022.9834029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们开发了在线调度策略,以最小化受传输容量和长期平均资源约束的多源两跳系统中的平均信息年龄(AoI),其中独立源随机生成状态更新数据包,这些数据包通过容易出错的链路通过中继发送到目的地。提出了一个随机优化问题,并求解了已知和未知环境下的随机优化问题。对于已知环境,利用漂移加惩罚方法,提出了一种在线的近最优低复杂度策略。对于未知环境,采用李雅普诺夫优化理论和决斗双深度Qnetwork开发了一种深度强化学习策略。仿真结果表明,与基于贪婪的基准策略相比,该策略的性能提高了136%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Minimizing the AoI in Multi-Source Two-Hop Systems under an Average Resource Constraint
We develop online scheduling policies to minimize the sum average age of information (AoI) subject to transmission capacity and long-run average resource constraints in a multisource two-hop system, where independent sources randomly generate status update packets which are sent to the destination via a relay through error-prone links. A stochastic optimization problem is formulated and solved in known and unknown environments. For the known environment, an online nearoptimal low-complexity policy is developed using the driftplus-penalty method. For the unknown environment, a deep reinforcement learning policy is developed by employing the Lyapunov optimization theory and a dueling double deep Qnetwork. Simulation results show up to 136% performance improvement of the proposed policy compared to a greedy-based baseline policy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Secure Multi-Antenna Coded Caching Deep Transfer Learning Based Radio Map Estimation for Indoor Wireless Communications A New Outage Probability Bound for IR-HARQ and Its Application to Power Adaptation SPAWC 2022 Cover Page A Sequential Experience-driven Contextual Bandit Policy for MIMO TWAF Online Relay Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1