Beta-Liouville隐马尔可夫模型的在线学习:视频监控和动作识别的增量变分学习

Samr Ali, N. Bouguila
{"title":"Beta-Liouville隐马尔可夫模型的在线学习:视频监控和动作识别的增量变分学习","authors":"Samr Ali, N. Bouguila","doi":"10.1109/ICIP40778.2020.9191144","DOIUrl":null,"url":null,"abstract":"Challenges in realtime installation of surveillance systems is an active area of research, especially with the use of adaptable machine learning techniques. In this paper, we propose the use of variational learning of Beta-Liouville (BL) hidden Markov models (HMM) for AR in an online setup. This proposed incremental framework enables continuous adjustment of the system for better modelling. We evaluate the proposed model on the visible IOSB dataset to validate the framework.","PeriodicalId":405734,"journal":{"name":"2020 IEEE International Conference on Image Processing (ICIP)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Online Learning for Beta-Liouville Hidden Markov Models: Incremental Variational Learning for Video Surveillance and Action Recognition\",\"authors\":\"Samr Ali, N. Bouguila\",\"doi\":\"10.1109/ICIP40778.2020.9191144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Challenges in realtime installation of surveillance systems is an active area of research, especially with the use of adaptable machine learning techniques. In this paper, we propose the use of variational learning of Beta-Liouville (BL) hidden Markov models (HMM) for AR in an online setup. This proposed incremental framework enables continuous adjustment of the system for better modelling. We evaluate the proposed model on the visible IOSB dataset to validate the framework.\",\"PeriodicalId\":405734,\"journal\":{\"name\":\"2020 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP40778.2020.9191144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP40778.2020.9191144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

实时安装监控系统的挑战是一个活跃的研究领域,特别是使用适应性机器学习技术。在本文中,我们提出将变分学习的Beta-Liouville (BL)隐马尔可夫模型(HMM)用于在线AR设置。这个建议的增量框架使系统能够不断调整,以更好地建模。我们在可见的IOSB数据集上评估了所提出的模型以验证该框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Online Learning for Beta-Liouville Hidden Markov Models: Incremental Variational Learning for Video Surveillance and Action Recognition
Challenges in realtime installation of surveillance systems is an active area of research, especially with the use of adaptable machine learning techniques. In this paper, we propose the use of variational learning of Beta-Liouville (BL) hidden Markov models (HMM) for AR in an online setup. This proposed incremental framework enables continuous adjustment of the system for better modelling. We evaluate the proposed model on the visible IOSB dataset to validate the framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Adversarial Active Learning With Model Uncertainty For Image Classification Emotion Transformation Feature: Novel Feature For Deception Detection In Videos Object Segmentation In Electrical Impedance Tomography For Tactile Sensing A Syndrome-Based Autoencoder For Point Cloud Geometry Compression A Comparison Of Compressed Sensing And Dnn Based Reconstruction For Ghost Motion Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1