一种利用未校准液晶测量表面传热系数的新实验技术

W. Turnbull, P. Oosthuizen
{"title":"一种利用未校准液晶测量表面传热系数的新实验技术","authors":"W. Turnbull, P. Oosthuizen","doi":"10.1115/imece1999-1111","DOIUrl":null,"url":null,"abstract":"\n A new experimental technique has been developed that permits the determination of local surface heat transfer coefficients on surfaces without requirement for calibration of the temperature-sensing device. The technique uses the phase delay that develops between the surface temperature response and an imposed periodic surface heat flux. This phase delay is dependent upon the thermophysical properties of the model, the heat flux driving frequency and the local heat transfer coefficient. It is not a function of magnitude of the local heat flux. Since only phase differences are being measured there is no requirement to calibrate the temperature sensor, in this instance a thermochromic liquid crystal. Application of a periodic surface heat flux to a flat plate resulted in a surface colour response that was a function of time. This response was captured using a standard colour CCD camera and the phase delay angles were determined using Fourier analysis. Only the 8 bit G component of the captured RGB signal was required, there being no need to determine a Hue value. From these experimentally obtained phase delay angles it was possible to determine heat transfer coefficients that compared well with those predicted using a standard correlation.","PeriodicalId":120929,"journal":{"name":"Heat Transfer: Volume 4","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A New Experimental Technique for Measuring Surface Heat Transfer Coefficients Using Uncalibrated Liquid Crystals\",\"authors\":\"W. Turnbull, P. Oosthuizen\",\"doi\":\"10.1115/imece1999-1111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A new experimental technique has been developed that permits the determination of local surface heat transfer coefficients on surfaces without requirement for calibration of the temperature-sensing device. The technique uses the phase delay that develops between the surface temperature response and an imposed periodic surface heat flux. This phase delay is dependent upon the thermophysical properties of the model, the heat flux driving frequency and the local heat transfer coefficient. It is not a function of magnitude of the local heat flux. Since only phase differences are being measured there is no requirement to calibrate the temperature sensor, in this instance a thermochromic liquid crystal. Application of a periodic surface heat flux to a flat plate resulted in a surface colour response that was a function of time. This response was captured using a standard colour CCD camera and the phase delay angles were determined using Fourier analysis. Only the 8 bit G component of the captured RGB signal was required, there being no need to determine a Hue value. From these experimentally obtained phase delay angles it was possible to determine heat transfer coefficients that compared well with those predicted using a standard correlation.\",\"PeriodicalId\":120929,\"journal\":{\"name\":\"Heat Transfer: Volume 4\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heat Transfer: Volume 4\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece1999-1111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer: Volume 4","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece1999-1111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种新的实验技术,可以在不需要校准温度传感装置的情况下测定表面的局部传热系数。该技术利用了在表面温度响应和施加的周期性表面热通量之间产生的相位延迟。这种相位延迟取决于模型的热物理性质、热流驱动频率和局部传热系数。它不是局部热通量大小的函数。由于只测量相位差,因此不需要校准温度传感器,在这种情况下是热致变色液晶。在平板上施加周期性表面热通量,可以得到随时间变化的表面颜色响应。使用标准彩色CCD相机捕获该响应,并使用傅里叶分析确定相位延迟角。只需要捕获的RGB信号的8位G分量,不需要确定色相值。从这些实验获得的相位延迟角,可以确定与使用标准相关性预测的传热系数相比较的传热系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A New Experimental Technique for Measuring Surface Heat Transfer Coefficients Using Uncalibrated Liquid Crystals
A new experimental technique has been developed that permits the determination of local surface heat transfer coefficients on surfaces without requirement for calibration of the temperature-sensing device. The technique uses the phase delay that develops between the surface temperature response and an imposed periodic surface heat flux. This phase delay is dependent upon the thermophysical properties of the model, the heat flux driving frequency and the local heat transfer coefficient. It is not a function of magnitude of the local heat flux. Since only phase differences are being measured there is no requirement to calibrate the temperature sensor, in this instance a thermochromic liquid crystal. Application of a periodic surface heat flux to a flat plate resulted in a surface colour response that was a function of time. This response was captured using a standard colour CCD camera and the phase delay angles were determined using Fourier analysis. Only the 8 bit G component of the captured RGB signal was required, there being no need to determine a Hue value. From these experimentally obtained phase delay angles it was possible to determine heat transfer coefficients that compared well with those predicted using a standard correlation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mass Transfer Process of Gaseous Carbon Dioxide Into Water Jet Through Orifice Mixing System A New Facility for Measurements of Three-Dimensional, Local Subcooled Flow Boiling Heat Flux and Related Critical Heat Flux Numerical Solution of Thermal and Fluid Flow With Phase Change by VOF Method Stacked Microchannel Heat Sinks for Liquid Cooling of Microelectronic Components Some Aspects of Critical-Heat-Flux Enhancement in Tubes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1