Meng Shen, Mingwei Wei, Liehuang Zhu, Mingzhong Wang, Fuliang Li
{"title":"基于二阶马尔可夫链的证书感知加密流量分类","authors":"Meng Shen, Mingwei Wei, Liehuang Zhu, Mingzhong Wang, Fuliang Li","doi":"10.1109/IWQoS.2016.7590451","DOIUrl":null,"url":null,"abstract":"With the prosperity of network applications, traffic classification serves as a crucial role in network management and malicious attack detection. The widely used encryption transmission protocols, such as the Secure Socket Layer/Transport Layer Security (SSL/TLS) protocols, leads to the failure of traditional payload-based classification methods. Existing methods for encrypted traffic classification suffer from low accuracy. In this paper, we propose a certificate-aware encrypted traffic classification method based on the Second-Order Markov Chain. We start by exploring reasons why existing methods not perform well, and make a novel observation that certificate packet length in SSL/TLS sessions contributes to application discrimination. To increase the diversity of application fingerprints, we develop a new model by incorporating the certificate packet length clustering into the Second-Order homogeneous Markov chains. Extensive evaluation results show that the proposed method lead to a 30% improvement on average compared with the state-of-the-art method, in terms of classification accuracy.","PeriodicalId":304978,"journal":{"name":"2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS)","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Certificate-aware encrypted traffic classification using Second-Order Markov Chain\",\"authors\":\"Meng Shen, Mingwei Wei, Liehuang Zhu, Mingzhong Wang, Fuliang Li\",\"doi\":\"10.1109/IWQoS.2016.7590451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the prosperity of network applications, traffic classification serves as a crucial role in network management and malicious attack detection. The widely used encryption transmission protocols, such as the Secure Socket Layer/Transport Layer Security (SSL/TLS) protocols, leads to the failure of traditional payload-based classification methods. Existing methods for encrypted traffic classification suffer from low accuracy. In this paper, we propose a certificate-aware encrypted traffic classification method based on the Second-Order Markov Chain. We start by exploring reasons why existing methods not perform well, and make a novel observation that certificate packet length in SSL/TLS sessions contributes to application discrimination. To increase the diversity of application fingerprints, we develop a new model by incorporating the certificate packet length clustering into the Second-Order homogeneous Markov chains. Extensive evaluation results show that the proposed method lead to a 30% improvement on average compared with the state-of-the-art method, in terms of classification accuracy.\",\"PeriodicalId\":304978,\"journal\":{\"name\":\"2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS)\",\"volume\":\"105 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWQoS.2016.7590451\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWQoS.2016.7590451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Certificate-aware encrypted traffic classification using Second-Order Markov Chain
With the prosperity of network applications, traffic classification serves as a crucial role in network management and malicious attack detection. The widely used encryption transmission protocols, such as the Secure Socket Layer/Transport Layer Security (SSL/TLS) protocols, leads to the failure of traditional payload-based classification methods. Existing methods for encrypted traffic classification suffer from low accuracy. In this paper, we propose a certificate-aware encrypted traffic classification method based on the Second-Order Markov Chain. We start by exploring reasons why existing methods not perform well, and make a novel observation that certificate packet length in SSL/TLS sessions contributes to application discrimination. To increase the diversity of application fingerprints, we develop a new model by incorporating the certificate packet length clustering into the Second-Order homogeneous Markov chains. Extensive evaluation results show that the proposed method lead to a 30% improvement on average compared with the state-of-the-art method, in terms of classification accuracy.