{"title":"DeepThermo: Deep Learning Accelerated Parallel Monte Carlo Sampling for Thermodynamics Evaluation of High Entropy Alloys","authors":"Junqi Yin, Feiyi Wang, M. Shankar","doi":"10.1109/IPDPS54959.2023.00041","DOIUrl":null,"url":null,"abstract":"Since the introduction of Metropolis Monte Carlo (MC) sampling, it and its variants have become standard tools used for thermodynamics evaluations of physical systems. However, a long-standing problem that hinders the effectiveness and efficiency of MC sampling is the lack of a generic method (a.k.a. MC proposal) to update the system configurations. Consequently, current practices are not scalable. Here we propose a parallel MC sampling framework for thermodynamics evaluation—DeepThermo. By using deep learning–based MC proposals that can globally update the system configurations, we show that DeepThermo can effectively evaluate the phase transition behaviors of high entropy alloys, which have an astronomical configuration space. For the first time, we directly evaluate a density of states expanding over a range of ~e10,000 for a real material. We also demonstrate DeepThermo’s performance and scalability up to 3,000 GPUs on both NVIDIA V100 and AMD MI250X-based supercomputers.","PeriodicalId":343684,"journal":{"name":"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS54959.2023.00041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自从引入Metropolis蒙特卡罗(MC)采样以来,它及其变体已成为用于物理系统热力学评估的标准工具。然而,一个长期存在的问题阻碍了MC采样的有效性和效率,即缺乏更新系统配置的通用方法(即MC建议)。因此,当前的实践是不可伸缩的。本文提出了一个用于热力学评估的并行MC采样框架——deepthermo。通过使用基于深度学习的MC建议,可以全局更新系统构型,我们表明DeepThermo可以有效地评估具有天文构型空间的高熵合金的相变行为。我们第一次直接计算了真实材料在~e10,000范围内扩展的态密度。我们还展示了DeepThermo在NVIDIA V100和AMD mi250超级计算机上高达3000个gpu的性能和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DeepThermo: Deep Learning Accelerated Parallel Monte Carlo Sampling for Thermodynamics Evaluation of High Entropy Alloys
Since the introduction of Metropolis Monte Carlo (MC) sampling, it and its variants have become standard tools used for thermodynamics evaluations of physical systems. However, a long-standing problem that hinders the effectiveness and efficiency of MC sampling is the lack of a generic method (a.k.a. MC proposal) to update the system configurations. Consequently, current practices are not scalable. Here we propose a parallel MC sampling framework for thermodynamics evaluation—DeepThermo. By using deep learning–based MC proposals that can globally update the system configurations, we show that DeepThermo can effectively evaluate the phase transition behaviors of high entropy alloys, which have an astronomical configuration space. For the first time, we directly evaluate a density of states expanding over a range of ~e10,000 for a real material. We also demonstrate DeepThermo’s performance and scalability up to 3,000 GPUs on both NVIDIA V100 and AMD MI250X-based supercomputers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GPU-Accelerated Error-Bounded Compression Framework for Quantum Circuit Simulations Generalizable Reinforcement Learning-Based Coarsening Model for Resource Allocation over Large and Diverse Stream Processing Graphs Smart Redbelly Blockchain: Reducing Congestion for Web3 QoS-Aware and Cost-Efficient Dynamic Resource Allocation for Serverless ML Workflows Fast Sparse GPU Kernels for Accelerated Training of Graph Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1